IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004315.html
   My bibliography  Save this article

Automatic Adaptation to Fast Input Changes in a Time-Invariant Neural Circuit

Author

Listed:
  • Arjun Bharioke
  • Dmitri B Chklovskii

Abstract

Neurons must faithfully encode signals that can vary over many orders of magnitude despite having only limited dynamic ranges. For a correlated signal, this dynamic range constraint can be relieved by subtracting away components of the signal that can be predicted from the past, a strategy known as predictive coding, that relies on learning the input statistics. However, the statistics of input natural signals can also vary over very short time scales e.g., following saccades across a visual scene. To maintain a reduced transmission cost to signals with rapidly varying statistics, neuronal circuits implementing predictive coding must also rapidly adapt their properties. Experimentally, in different sensory modalities, sensory neurons have shown such adaptations within 100 ms of an input change. Here, we show first that linear neurons connected in a feedback inhibitory circuit can implement predictive coding. We then show that adding a rectification nonlinearity to such a feedback inhibitory circuit allows it to automatically adapt and approximate the performance of an optimal linear predictive coding network, over a wide range of inputs, while keeping its underlying temporal and synaptic properties unchanged. We demonstrate that the resulting changes to the linearized temporal filters of this nonlinear network match the fast adaptations observed experimentally in different sensory modalities, in different vertebrate species. Therefore, the nonlinear feedback inhibitory network can provide automatic adaptation to fast varying signals, maintaining the dynamic range necessary for accurate neuronal transmission of natural inputs.Author Summary: An animal exploring a natural scene receives sensory inputs that vary, rapidly, over many orders of magnitude. Neurons must transmit these inputs faithfully despite both their limited dynamic range and relatively slow adaptation time scales. One well-accepted strategy for transmitting signals through limited dynamic range channels–predictive coding–transmits only components of the signal that cannot be predicted from the past. Predictive coding algorithms respond maximally to unexpected inputs, making them appealing in describing sensory transmission. However, recent experimental evidence has shown that neuronal circuits adapt quickly, to respond optimally following rapid input changes. Here, we reconcile the predictive coding algorithm with this automatic adaptation, by introducing a fixed nonlinearity into a predictive coding circuit. The resulting network automatically “adapts” its linearized response to different inputs. Indeed, it approximates the performance of an optimal linear circuit implementing predictive coding, without having to vary its internal parameters. Further, adding this nonlinearity to the predictive coding circuit still allows the input to be compressed losslessly, allowing for additional downstream manipulations. Finally, we demonstrate that the nonlinear circuit dynamics match responses in both auditory and visual neurons. Therefore, we believe that this nonlinear circuit may be a general circuit motif that can be applied in different neural circuits, whenever it is necessary to provide an automatic improvement in the quality of the transmitted signal, for a fast varying input distribution.

Suggested Citation

  • Arjun Bharioke & Dmitri B Chklovskii, 2015. "Automatic Adaptation to Fast Input Changes in a Time-Invariant Neural Circuit," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-24, August.
  • Handle: RePEc:plo:pcbi00:1004315
    DOI: 10.1371/journal.pcbi.1004315
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004315
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004315&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Toshihiko Hosoya & Stephen A. Baccus & Markus Meister, 2005. "Dynamic predictive coding by the retina," Nature, Nature, vol. 436(7047), pages 71-77, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias S Keil & Agata Lapedriza & David Masip & Jordi Vitria, 2008. "Preferred Spatial Frequencies for Human Face Processing Are Associated with Optimal Class Discrimination in the Machine," PLOS ONE, Public Library of Science, vol. 3(7), pages 1-5, July.
    2. Matthias S Keil, 2009. "“I Look in Your Eyes, Honey”: Internal Face Features Induce Spatial Frequency Preference for Human Face Processing," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-13, March.
    3. Krishnamurthy V. Vemuru, 2022. "Implementation of the Canny Edge Detector Using a Spiking Neural Network," Future Internet, MDPI, vol. 14(12), pages 1-12, December.
    4. Tristan G. Heintz & Antonio J. Hinojosa & Sina E. Dominiak & Leon Lagnado, 2022. "Opposite forms of adaptation in mouse visual cortex are controlled by distinct inhibitory microcircuits," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Marcel Nonnenmacher & Christian Behrens & Philipp Berens & Matthias Bethge & Jakob H Macke, 2017. "Signatures of criticality arise from random subsampling in simple population models," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-23, October.
    6. Gabriel D Puccini & Maria V Sanchez-Vives & Albert Compte, 2007. "Integrated Mechanisms of Anticipation and Rate-of-Change Computations in Cortical Circuits," PLOS Computational Biology, Public Library of Science, vol. 3(5), pages 1-13, May.
    7. Miguel Maravall & Rasmus S Petersen & Adrienne L Fairhall & Ehsan Arabzadeh & Mathew E Diamond, 2007. "Shifts in Coding Properties and Maintenance of Information Transmission during Adaptation in Barrel Cortex," PLOS Biology, Public Library of Science, vol. 5(2), pages 1-12, January.
    8. Johnatan Aljadeff & Ronen Segev & Michael J Berry II & Tatyana O Sharpee, 2013. "Spike Triggered Covariance in Strongly Correlated Gaussian Stimuli," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-12, September.
    9. Marcus H C Howlett & Robert G Smith & Maarten Kamermans, 2017. "A novel mechanism of cone photoreceptor adaptation," PLOS Biology, Public Library of Science, vol. 15(4), pages 1-28, April.
    10. Jian K Liu & Tim Gollisch, 2015. "Spike-Triggered Covariance Analysis Reveals Phenomenological Diversity of Contrast Adaptation in the Retina," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-30, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.