IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0041703.html
   My bibliography  Save this article

Development of a Novel In Silico Docking Simulation Model for the Fine HIV-1 Cytotoxic T Lymphocyte Epitope Mapping

Author

Listed:
  • Masahiko Mori
  • Kei Matsuki
  • Tomoyuki Maekawa
  • Mari Tanaka
  • Busarawan Sriwanthana
  • Masaru Yokoyama
  • Koya Ariyoshi

Abstract

Introduction: Class I HLA's polymorphism has hampered CTL epitope mapping with laborious experiments. Objectives are 1) to evaluate the novel in silico model in predicting previously reported epitopes in comparison with existing program, and 2) to apply the model to predict optimal epitopes with HLA using experimental results. Materials and Methods: We have developed a novel in silico epitope prediction method, based on HLA crystal structure and a peptide docking simulation model, calculating the peptide-HLA binding affinity at four amino acid residues in each terminal. It was applied to predict 52 HIV best–defined CTL epitopes from 15-mer overlapping peptides, and its predictive ability was compared with the HLA binding motif-based program of HLArestrictor. It was then used to predict HIV-1 Gag optimal epitopes from previous ELISpot results. Results: 43/52 (82.7%) epitopes were detected by the novel model, whereas 37 (71.2%) by HLArestrictor. We also found a significant reduction in epitope detection rates for longer epitopes in HLArestrictor (p = 0.027), but not in the novel model. Improved epitope prediction was also found by introducing both models, especially in specificity (p

Suggested Citation

  • Masahiko Mori & Kei Matsuki & Tomoyuki Maekawa & Mari Tanaka & Busarawan Sriwanthana & Masaru Yokoyama & Koya Ariyoshi, 2012. "Development of a Novel In Silico Docking Simulation Model for the Fine HIV-1 Cytotoxic T Lymphocyte Epitope Mapping," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-6, July.
  • Handle: RePEc:plo:pone00:0041703
    DOI: 10.1371/journal.pone.0041703
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041703
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0041703&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0041703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng Wang & John Sidney & Courtney Dow & Bianca Mothé & Alessandro Sette & Bjoern Peters, 2008. "A Systematic Assessment of MHC Class II Peptide Binding Predictions and Evaluation of a Consensus Approach," PLOS Computational Biology, Public Library of Science, vol. 4(4), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Zhang & Peng Wang & Nikitas Papangelopoulos & Ying Xu & Alessandro Sette & Philip E Bourne & Ole Lund & Julia Ponomarenko & Morten Nielsen & Bjoern Peters, 2010. "Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-10, February.
    2. repec:arp:sjmhsm:2020:p:71-76 is not listed on IDEAS
    3. Regina S Salvat & Andrew S Parker & Yoonjoo Choi & Chris Bailey-Kellogg & Karl E Griswold, 2015. "Mapping the Pareto Optimal Design Space for a Functionally Deimmunized Biotherapeutic Candidate," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-15, January.
    4. Kyle Saylor & Ben Donnan & Chenming Zhang, 2022. "Computational mining of MHC class II epitopes for the development of universal immunogenic proteins," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-17, March.
    5. Satyavani Kaliamurthi & Gurudeeban Selvaraj & Sathishkumar Chinnasamy & Qiankun Wang & Asma Sindhoo Nangraj & William C. Cho & Keren Gu & Dong-Qing Wei, 2019. "Immunomics Datasets and Tools: To Identify Potential Epitope Segments for Designing Chimeric Vaccine Candidate to Cervix Papilloma," Data, MDPI, vol. 4(1), pages 1-17, February.
    6. Gouri Shankar Pandey & Chen Yanover & Tom E Howard & Zuben E Sauna, 2013. "Polymorphisms in the F8 Gene and MHC-II Variants as Risk Factors for the Development of Inhibitory Anti-Factor VIII Antibodies during the Treatment of Hemophilia A: A Computational Assessment," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-11, May.
    7. Stephen J Goodswen & Paul J Kennedy & John T Ellis, 2014. "Enhancing In Silico Protein-Based Vaccine Discovery for Eukaryotic Pathogens Using Predicted Peptide-MHC Binding and Peptide Conservation Scores," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0041703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.