IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0019729.html
   My bibliography  Save this article

Dissecting the Specificity of Protein-Protein Interaction in Bacterial Two-Component Signaling: Orphans and Crosstalks

Author

Listed:
  • Andrea Procaccini
  • Bryan Lunt
  • Hendrik Szurmant
  • Terence Hwa
  • Martin Weigt

Abstract

Predictive understanding of the myriads of signal transduction pathways in a cell is an outstanding challenge of systems biology. Such pathways are primarily mediated by specific but transient protein-protein interactions, which are difficult to study experimentally. In this study, we dissect the specificity of protein-protein interactions governing two-component signaling (TCS) systems ubiquitously used in bacteria. Exploiting the large number of sequenced bacterial genomes and an operon structure which packages many pairs of interacting TCS proteins together, we developed a computational approach to extract a molecular interaction code capturing the preferences of a small but critical number of directly interacting residue pairs. This code is found to reflect physical interaction mechanisms, with the strongest signal coming from charged amino acids. It is used to predict the specificity of TCS interaction: Our results compare favorably to most available experimental results, including the prediction of 7 (out of 8 known) interaction partners of orphan signaling proteins in Caulobacter crescentus. Surveying among the available bacterial genomes, our results suggest 15∼25% of the TCS proteins could participate in out-of-operon “crosstalks”. Additionally, we predict clusters of crosstalking candidates, expanding from the anecdotally known examples in model organisms. The tools and results presented here can be used to guide experimental studies towards a system-level understanding of two-component signaling.

Suggested Citation

  • Andrea Procaccini & Bryan Lunt & Hendrik Szurmant & Terence Hwa & Martin Weigt, 2011. "Dissecting the Specificity of Protein-Protein Interaction in Bacterial Two-Component Signaling: Orphans and Crosstalks," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-9, May.
  • Handle: RePEc:plo:pone00:0019729
    DOI: 10.1371/journal.pone.0019729
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019729
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0019729&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0019729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Emanuele G. Biondi & Sarah J. Reisinger & Jeffrey M. Skerker & Muhammad Arif & Barrett S. Perchuk & Kathleen R. Ryan & Michael T. Laub, 2006. "Regulation of the bacterial cell cycle by an integrated genetic circuit," Nature, Nature, vol. 444(7121), pages 899-904, December.
    2. Lukas Burger & Erik van Nimwegen, 2010. "Disentangling Direct from Indirect Co-Evolution of Residues in Protein Alignments," PLOS Computational Biology, Public Library of Science, vol. 6(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omar Haq & Michael Andrec & Alexandre V Morozov & Ronald M Levy, 2012. "Correlated Electrostatic Mutations Provide a Reservoir of Stability in HIV Protease," PLOS Computational Biology, Public Library of Science, vol. 8(9), pages 1-10, September.
    2. Patrick Bryant & Gabriele Pozzati & Arne Elofsson, 2022. "Improved prediction of protein-protein interactions using AlphaFold2," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Ross D. Jones & Yili Qian & Katherine Ilia & Benjamin Wang & Michael T. Laub & Domitilla Del Vecchio & Ron Weiss, 2022. "Robust and tunable signal processing in mammalian cells via engineered covalent modification cycles," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Christoph Feinauer & Marcin J Skwark & Andrea Pagnani & Erik Aurell, 2014. "Improving Contact Prediction along Three Dimensions," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susann Vorberg & Stefan Seemayer & Johannes Söding, 2018. "Synthetic protein alignments by CCMgen quantify noise in residue-residue contact prediction," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-25, November.
    2. Simona Cocco & Remi Monasson & Martin Weigt, 2013. "From Principal Component to Direct Coupling Analysis of Coevolution in Proteins: Low-Eigenvalue Modes are Needed for Structure Prediction," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-17, August.
    3. Saeed Omidi & Mihaela Zavolan & Mikhail Pachkov & Jeremie Breda & Severin Berger & Erik van Nimwegen, 2017. "Automated incorporation of pairwise dependency in transcription factor binding site prediction using dinucleotide weight tensors," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-22, July.
    4. Carlo Baldassi & Marco Zamparo & Christoph Feinauer & Andrea Procaccini & Riccardo Zecchina & Martin Weigt & Andrea Pagnani, 2014. "Fast and Accurate Multivariate Gaussian Modeling of Protein Families: Predicting Residue Contacts and Protein-Interaction Partners," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-12, March.
    5. Mitchell Brüderlin & Raphael Böhm & Firas Fadel & Sebastian Hiller & Tilman Schirmer & Badri N. Dubey, 2023. "Structural features discriminating hybrid histidine kinase Rec domains from response regulator homologs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Yan Zeng & Wei Wang & Yong Ding & Jilin Zhang & Yongjian Ren & Guangzheng Yi, 2022. "Adaptive Distributed Parallel Training Method for a Deep Learning Model Based on Dynamic Critical Paths of DAG," Mathematics, MDPI, vol. 10(24), pages 1-21, December.
    7. Erik van Nimwegen, 2016. "Inferring Contacting Residues within and between Proteins: What Do the Probabilities Mean?," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-10, May.
    8. Hugo Jacquin & Amy Gilson & Eugene Shakhnovich & Simona Cocco & Rémi Monasson, 2016. "Benchmarking Inverse Statistical Approaches for Protein Structure and Design with Exactly Solvable Models," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-18, May.
    9. Tatjana Braun & Julia Koehler Leman & Oliver F Lange, 2015. "Combining Evolutionary Information and an Iterative Sampling Strategy for Accurate Protein Structure Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-20, December.
    10. Elena Facco & Andrea Pagnani & Elena Tea Russo & Alessandro Laio, 2019. "The intrinsic dimension of protein sequence evolution," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-16, April.
    11. Marcin J Skwark & Daniele Raimondi & Mirco Michel & Arne Elofsson, 2014. "Improved Contact Predictions Using the Recognition of Protein Like Contact Patterns," PLOS Computational Biology, Public Library of Science, vol. 10(11), pages 1-14, November.
    12. Keren Lasker & Steven Boeynaems & Vinson Lam & Daniel Scholl & Emma Stainton & Adam Briner & Maarten Jacquemyn & Dirk Daelemans & Ashok Deniz & Elizabeth Villa & Alex S. Holehouse & Aaron D. Gitler & , 2022. "The material properties of a bacterial-derived biomolecular condensate tune biological function in natural and synthetic systems," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0019729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.