IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003564.html
   My bibliography  Save this article

Slow Feature Analysis on Retinal Waves Leads to V1 Complex Cells

Author

Listed:
  • Sven Dähne
  • Niko Wilbert
  • Laurenz Wiskott

Abstract

The developing visual system of many mammalian species is partially structured and organized even before the onset of vision. Spontaneous neural activity, which spreads in waves across the retina, has been suggested to play a major role in these prenatal structuring processes. Recently, it has been shown that when employing an efficient coding strategy, such as sparse coding, these retinal activity patterns lead to basis functions that resemble optimal stimuli of simple cells in primary visual cortex (V1). Here we present the results of applying a coding strategy that optimizes for temporal slowness, namely Slow Feature Analysis (SFA), to a biologically plausible model of retinal waves. Previously, SFA has been successfully applied to model parts of the visual system, most notably in reproducing a rich set of complex-cell features by training SFA with quasi-natural image sequences. In the present work, we obtain SFA units that share a number of properties with cortical complex-cells by training on simulated retinal waves. The emergence of two distinct properties of the SFA units (phase invariance and orientation tuning) is thoroughly investigated via control experiments and mathematical analysis of the input-output functions found by SFA. The results support the idea that retinal waves share relevant temporal and spatial properties with natural visual input. Hence, retinal waves seem suitable training stimuli to learn invariances and thereby shape the developing early visual system such that it is best prepared for coding input from the natural world.Author Summary: It is believed that our sensory systems are adapted to statistical properties of behaviorally relevant elements in our natural environments. In the case of vision, one adaptation principle that has been put forward is the so-called slowness principle. However, the visual system is partially structured even before eye opening, when no natural input is available yet. Thus, spontaneous neural activity in the developing visual system of mammals (so-called retinal waves) has been suggested to contribute to shaping connections in early visual areas before the onset of vision. Here we aim to bring these two ideas together. Specifically, we apply an algorithm that implements the slowness principle to simulated retinal waves. The algorithm is set to encode the retinal wave input and thus has to extract relevant features from that input. After encoding, we are able to investigate the emerged representation and we find that the extracted features bear strong similarity to features that are encoded by neurons in the early visual system. These features are the building blocks for an object representation that is independent of the object's position in the visual field.

Suggested Citation

  • Sven Dähne & Niko Wilbert & Laurenz Wiskott, 2014. "Slow Feature Analysis on Retinal Waves Leads to V1 Complex Cells," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-13, May.
  • Handle: RePEc:plo:pcbi00:1003564
    DOI: 10.1371/journal.pcbi.1003564
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003564
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003564&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert Legenstein & Niko Wilbert & Laurenz Wiskott, 2010. "Reinforcement Learning on Slow Features of High-Dimensional Input Streams," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-13, August.
    2. Gidon Felsen & Jon Touryan & Feng Han & Yang Dan, 2005. "Cortical Sensitivity to Visual Features in Natural Scenes," PLOS Biology, Public Library of Science, vol. 3(10), pages 1-1, September.
    3. Daniel Weiller & Robert Märtin & Sven Dähne & Andreas K Engel & Peter König, 2010. "Involving Motor Capabilities in the Formation of Sensory Space Representations," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-12, April.
    4. Michael Weliky & Lawrence C. Katz, 1997. "Disruption of orientation tuning visual cortex by artificially correlated neuronal activity," Nature, Nature, vol. 386(6626), pages 680-685, April.
    5. Mathias Franzius & Henning Sprekeler & Laurenz Wiskott, 2007. "Slowness and Sparseness Lead to Place, Head-Direction, and Spatial-View Cells," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Bolaños & Javier G. Orlandi & Ryo Aoki & Akshay V. Jagadeesh & Justin L. Gardner & Andrea Benucci, 2024. "Efficient coding of natural images in the mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Nicholas A Lesica & Toshiyuki Ishii & Garrett B Stanley & Toshihiko Hosoya, 2008. "Estimating Receptive Fields from Responses to Natural Stimuli with Asymmetric Intensity Distributions," PLOS ONE, Public Library of Science, vol. 3(8), pages 1-10, August.
    3. Benjamin R Cowley & Matthew A Smith & Adam Kohn & Byron M Yu, 2016. "Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.
    4. Jeffrey D Fitzgerald & Ryan J Rowekamp & Lawrence C Sincich & Tatyana O Sharpee, 2011. "Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-9, October.
    5. Gianluigi Mongillo & Hanan Shteingart & Yonatan Loewenstein, 2014. "The Misbehavior of Reinforcement Learning," Discussion Paper Series dp661, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    6. Robert Legenstein & Niko Wilbert & Laurenz Wiskott, 2010. "Reinforcement Learning on Slow Features of High-Dimensional Input Streams," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-13, August.
    7. Hanan Shteingart & Yonatan Loewenstein, 2014. "Reinforcement Learning and Human Behavior," Discussion Paper Series dp656, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    8. Johnatan Aljadeff & Ronen Segev & Michael J Berry II & Tatyana O Sharpee, 2013. "Spike Triggered Covariance in Strongly Correlated Gaussian Stimuli," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-12, September.
    9. Diego B. Piza & Benjamin W. Corrigan & Roberto A. Gulli & Sonia Carmo & A. Claudio Cuello & Lyle Muller & Julio Martinez-Trujillo, 2024. "Primacy of vision shapes behavioral strategies and neural substrates of spatial navigation in marmoset hippocampus," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    10. Jian K Liu & Tim Gollisch, 2015. "Spike-Triggered Covariance Analysis Reveals Phenomenological Diversity of Contrast Adaptation in the Retina," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-30, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.