IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003082.html
   My bibliography  Save this article

Patterns of Proliferative Activity in the Colonic Crypt Determine Crypt Stability and Rates of Somatic Evolution

Author

Listed:
  • Rui Zhao
  • Franziska Michor

Abstract

Epithelial cells in the colon are arranged in cylindrical structures called crypts in which cellular proliferation and migration are tightly regulated. We hypothesized that the proliferation patterns of cells may determine the stability of crypts as well as the rates of somatic evolution towards colorectal tumorigenesis. Here, we propose a linear process model of colonic epithelial cells that explicitly takes into account the proliferation kinetics of cells as a function of cell position within the crypt. Our results indicate that proliferation kinetics has significant influence on the speed of cell movement, kinetics of mutation propagation, and sensitivity of the system to selective effects of mutated cells. We found that, of all proliferation curves tested, those with mitotic activities concentrated near the stem cell, including the actual proliferation kinetics determined in in vivo labeling experiments, have a greater ability of delaying the rate of mutation accumulation in colonic stem cells compared to hypothetical proliferation curves with mitotic activities focused near the top of the crypt column. Our model can be used to investigate the dynamics of proliferation and mutation accumulation in spatially arranged tissues.Author Summary: Mathematical and computational models have a long and rich history in enhancing our understanding of intestinal epithelial cells. A plethora of models have been proposed to describe different aspects of cellular behavior, including cell proliferation, migration, differentiation, and mutation accumulation. Here, we present a novel approach to examine the effects of proliferation kinetics on the rate of somatic evolution in a spatially arranged model of the colon. Based on our simulation results, we demonstrate that spatially determined proliferation kinetics has the ability to delay the rate of somatic evolution, and changes in proliferation patterns can significantly affect the speed of mutation accumulation. Our work highlights the importance of considering proliferation kinetics as well as the spatial organization of tissues when investigating the dynamics of cancer initiation.

Suggested Citation

  • Rui Zhao & Franziska Michor, 2013. "Patterns of Proliferative Activity in the Colonic Crypt Determine Crypt Stability and Rates of Somatic Evolution," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-15, June.
  • Handle: RePEc:plo:pcbi00:1003082
    DOI: 10.1371/journal.pcbi.1003082
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003082
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003082&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christoph Lengauer & Kenneth W. Kinzler & Bert Vogelstein, 1998. "Genetic instabilities in human cancers," Nature, Nature, vol. 396(6712), pages 643-649, December.
    2. C. Lengauer & K. W. Kinzler & B. Vogelstein, 1997. "Genetic instability in colorectal cancers," Nature, Nature, vol. 386(6625), pages 623-627, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergi Elizalde & Ashley M Laughney & Samuel F Bakhoum, 2018. "A Markov chain for numerical chromosomal instability in clonally expanding populations," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-28, September.
    2. Zimo Yang & Tao Zhou & Pak Ming Hui & Jian-Hong Ke, 2012. "Instability in Evolutionary Games," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    3. Signe Penner-Goeke & Zelda Lichtensztejn & Megan Neufeld & Jennifer L Ali & Alon D Altman & Mark W Nachtigal & Kirk J McManus, 2017. "The temporal dynamics of chromosome instability in ovarian cancer cell lines and primary patient samples," PLOS Genetics, Public Library of Science, vol. 13(4), pages 1-24, April.
    4. van Wieringen Wessel N. & van de Wiel Mark A., 2014. "Penalized differential pathway analysis of integrative oncogenomics studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(2), pages 141-158, April.
    5. Weissman, Daniel B. & Desai, Michael M. & Fisher, Daniel S. & Feldman, Marcus W., 2009. "The rate at which asexual populations cross fitness valleys," Theoretical Population Biology, Elsevier, vol. 75(4), pages 286-300.
    6. Paul R. Rosenbaum, 2004. "The Case-Only Odds Ratio as a Causal Parameter," Biometrics, The International Biometric Society, vol. 60(1), pages 233-240, March.
    7. Beibei Ru & Jinlin Huang & Yu Zhang & Kenneth Aldape & Peng Jiang, 2023. "Estimation of cell lineages in tumors from spatial transcriptomics data," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Yoon Hee Cho & Su Young Kim & Hae Dong Woo & Yang Jee Kim & Sung Whan Ha & Hai Won Chung, 2015. "Delayed Numerical Chromosome Aberrations in Human Fibroblasts by Low Dose of Radiation," IJERPH, MDPI, vol. 12(12), pages 1-11, December.
    9. Xia Li & Xiaoping Yao & Yibaina Wang & Fulan Hu & Fan Wang & Liying Jiang & Yupeng Liu & Da Wang & Guizhi Sun & Yashuang Zhao, 2013. "MLH1 Promoter Methylation Frequency in Colorectal Cancer Patients and Related Clinicopathological and Molecular Features," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-9, March.
    10. Simão, Éder M. & Cabral, Heleno B. & Castro, Mauro A.A. & Sinigaglia, Marialva & Mombach, José C.M. & Librelotto, Giovani R., 2010. "Modeling the Human Genome Maintenance network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4188-4194.
    11. Weifeng Tang & Hao Qiu & Hao Ding & Bin Sun & Lixin Wang & Jun Yin & Haiyong Gu, 2013. "Association between the STK15 F31I Polymorphism and Cancer Susceptibility: A Meta-Analysis Involving 43,626 Subjects," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    12. Fenglong Bie & Zhijie Wang & Yulong Li & Wei Guo & Yuanyuan Hong & Tiancheng Han & Fang Lv & Shunli Yang & Suxing Li & Xi Li & Peiyao Nie & Shun Xu & Ruochuan Zang & Moyan Zhang & Peng Song & Feiyue F, 2023. "Multimodal analysis of cell-free DNA whole-methylome sequencing for cancer detection and localization," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.