IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002872.html
   My bibliography  Save this article

Dynamic Finite Size Effects in Spiking Neural Networks

Author

Listed:
  • Michael A Buice
  • Carson C Chow

Abstract

We investigate the dynamics of a deterministic finite-sized network of synaptically coupled spiking neurons and present a formalism for computing the network statistics in a perturbative expansion. The small parameter for the expansion is the inverse number of neurons in the network. The network dynamics are fully characterized by a neuron population density that obeys a conservation law analogous to the Klimontovich equation in the kinetic theory of plasmas. The Klimontovich equation does not possess well-behaved solutions but can be recast in terms of a coupled system of well-behaved moment equations, known as a moment hierarchy. The moment hierarchy is impossible to solve but in the mean field limit of an infinite number of neurons, it reduces to a single well-behaved conservation law for the mean neuron density. For a large but finite system, the moment hierarchy can be truncated perturbatively with the inverse system size as a small parameter but the resulting set of reduced moment equations that are still very difficult to solve. However, the entire moment hierarchy can also be re-expressed in terms of a functional probability distribution of the neuron density. The moments can then be computed perturbatively using methods from statistical field theory. Here we derive the complete mean field theory and the lowest order second moment corrections for physiologically relevant quantities. Although we focus on finite-size corrections, our method can be used to compute perturbative expansions in any parameter. Author Summary: One avenue towards understanding how the brain functions is to create computational and mathematical models. However, a human brain has on the order of a hundred billion neurons with a quadrillion synaptic connections. Each neuron is a complex cell comprised of multiple compartments hosting a myriad of ions, proteins and other molecules. Even if computing power continues to increase exponentially, directly simulating all the processes in the brain on a computer is not feasible in the foreseeable future and even if this could be achieved, the resulting simulation may be no simpler to understand than the brain itself. Hence, the need for more tractable models. Historically, systems with many interacting bodies are easier to understand in the two opposite limits of a small number or an infinite number of elements and most of the theoretical efforts in understanding neural networks have been devoted to these two limits. There has been relatively little effort directed to the very relevant but difficult regime of large but finite networks. In this paper, we introduce a new formalism that borrows from the methods of many-body statistical physics to analyze finite size effects in spiking neural networks.

Suggested Citation

  • Michael A Buice & Carson C Chow, 2013. "Dynamic Finite Size Effects in Spiking Neural Networks," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-21, January.
  • Handle: RePEc:plo:pcbi00:1002872
    DOI: 10.1371/journal.pcbi.1002872
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002872
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002872&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea K Barreiro & Shree Hari Gautam & Woodrow L Shew & Cheng Ly, 2017. "A theoretical framework for analyzing coupled neuronal networks: Application to the olfactory system," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-37, October.
    2. Marc de Kamps & Mikkel Lepperød & Yi Ming Lai, 2019. "Computational geometry for modeling neural populations: From visualization to simulation," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-41, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.