IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002726.html
   My bibliography  Save this article

Spatially Pooled Contrast Responses Predict Neural and Perceptual Similarity of Naturalistic Image Categories

Author

Listed:
  • Iris I A Groen
  • Sennay Ghebreab
  • Victor A F Lamme
  • H Steven Scholte

Abstract

The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs) in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis). Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task. Author Summary: Humans excel in rapid and accurate processing of visual scenes. However, it is unclear which computations allow the visual system to convert light hitting the retina into a coherent representation of visual input in a rapid and efficient way. Here we used simple, computer-generated image categories with similar low-level structure as natural scenes to test whether a model of early integration of low-level information can predict perceived category similarity. Specifically, we show that summarized (spatially pooled) responses of model neurons covering the entire visual field (the population response) to low-level properties of visual input (contrasts) can already be informative about differences in early visual evoked activity as well as behavioral confusions of these categories. These results suggest that low-level population responses can carry relevant information to estimate similarity of controlled images, and put forward the exciting hypothesis that the visual system may exploit these responses to rapidly process real natural scenes. We propose that the spatial pooling that allows for the extraction of this information may be a plausible first step in extracting scene gist to form a rapid impression of the visual input.

Suggested Citation

  • Iris I A Groen & Sennay Ghebreab & Victor A F Lamme & H Steven Scholte, 2012. "Spatially Pooled Contrast Responses Predict Neural and Perceptual Similarity of Naturalistic Image Categories," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-16, October.
  • Handle: RePEc:plo:pcbi00:1002726
    DOI: 10.1371/journal.pcbi.1002726
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002726
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002726&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002726?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yan Karklin & Michael S. Lewicki, 2009. "Emergence of complex cell properties by learning to generalize in natural scenes," Nature, Nature, vol. 457(7225), pages 83-86, January.
    2. Marius V. Peelen & Li Fei-Fei & Sabine Kastner, 2009. "Neural mechanisms of rapid natural scene categorization in human visual cortex," Nature, Nature, vol. 460(7251), pages 94-97, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jörn-Philipp Lies & Ralf M Häfner & Matthias Bethge, 2014. "Slowness and Sparseness Have Diverging Effects on Complex Cell Learning," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-11, March.
    2. Ruben Coen-Cagli & Peter Dayan & Odelia Schwartz, 2012. "Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-18, March.
    3. Xiaofu He & Zhiyong Yang & Joe Z Tsien, 2011. "A Hierarchical Probabilistic Model for Rapid Object Categorization in Natural Scenes," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-15, May.
    4. Jeffrey D Fitzgerald & Ryan J Rowekamp & Lawrence C Sincich & Tatyana O Sharpee, 2011. "Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-9, October.
    5. Qianli Yang & Edgar Walker & R. James Cotton & Andreas S. Tolias & Xaq Pitkow, 2021. "Revealing nonlinear neural decoding by analyzing choices," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Boris Vladimirskiy & Robert Urbanczik & Walter Senn, 2015. "Hierarchical Novelty-Familiarity Representation in the Visual System by Modular Predictive Coding," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-19, December.
    7. Laurence Aitchison & Máté Lengyel, 2016. "The Hamiltonian Brain: Efficient Probabilistic Inference with Excitatory-Inhibitory Neural Circuit Dynamics," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.