Author
Listed:
- Imri Sofer
- Sébastien M Crouzet
- Thomas Serre
Abstract
Observers can rapidly perform a variety of visual tasks such as categorizing a scene as open, as outdoor, or as a beach. Although we know that different tasks are typically associated with systematic differences in behavioral responses, to date, little is known about the underlying mechanisms. Here, we implemented a single integrated paradigm that links perceptual processes with categorization processes. Using a large image database of natural scenes, we trained machine-learning classifiers to derive quantitative measures of task-specific perceptual discriminability based on the distance between individual images and different categorization boundaries. We showed that the resulting discriminability measure accurately predicts variations in behavioral responses across categorization tasks and stimulus sets. We further used the model to design an experiment, which challenged previous interpretations of the so-called “superordinate advantage.” Overall, our study suggests that observed differences in behavioral responses across rapid categorization tasks reflect natural variations in perceptual discriminability.Author Summary: The speed of sight has fascinated scientists and philosophers for centuries. In the blink of an eye, observers can rapidly and effortlessly perform a variety of categorization tasks such as categorizing a scene as open, as natural, or as a beach. The past decade of work has shown that there exist systematic differences in behavioral responses across different categorization tasks: For instance, participants appear to be faster and more accurate at categorizing a scene as outdoor (i.e., superordinate level) compared to categorizing a scene as a beach (i.e., basic level). Here, we describe a computational model combined with human psychophysics experiments, which help shed light on the underlying mechanisms. Using a large natural scene database, we trained machine learning algorithms for different categorization tasks and showed that it is possible to derive confidence measures that accurately predict variations in participants’ behavioral responses across categorization tasks and stimulus sets. Using the computational model to sample stimuli for a human experiment, we demonstrated that it is possible to reverse the superordinate advantage, rendering human observers superordinate categorization slower and less accurate than basic categorization—effectively challenging previous interpretations of the phenomenon. The study further offers a vivid example on how computational models can help summarize and organize existing experimental data as well as plan and interpret new experiments.
Suggested Citation
Imri Sofer & Sébastien M Crouzet & Thomas Serre, 2015.
"Explaining the Timing of Natural Scene Understanding with a Computational Model of Perceptual Categorization,"
PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-20, September.
Handle:
RePEc:plo:pcbi00:1004456
DOI: 10.1371/journal.pcbi.1004456
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004456. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.