IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002557.html
   My bibliography  Save this article

Short Term Synaptic Depression Imposes a Frequency Dependent Filter on Synaptic Information Transfer

Author

Listed:
  • Robert Rosenbaum
  • Jonathan Rubin
  • Brent Doiron

Abstract

Depletion of synaptic neurotransmitter vesicles induces a form of short term depression in synapses throughout the nervous system. This plasticity affects how synapses filter presynaptic spike trains. The filtering properties of short term depression are often studied using a deterministic synapse model that predicts the mean synaptic response to a presynaptic spike train, but ignores variability introduced by the probabilistic nature of vesicle release and stochasticity in synaptic recovery time. We show that this additional variability has important consequences for the synaptic filtering of presynaptic information. In particular, a synapse model with stochastic vesicle dynamics suppresses information encoded at lower frequencies more than information encoded at higher frequencies, while a model that ignores this stochasticity transfers information encoded at any frequency equally well. This distinction between the two models persists even when large numbers of synaptic contacts are considered. Our study provides strong evidence that the stochastic nature neurotransmitter vesicle dynamics must be considered when analyzing the information flow across a synapse. Author Summary: Neurons communicate through electro-chemical connections called synapses. Action potentials in a presynaptic neuron cause neurotransmitter vesicles to release their contents which then bind to nearby receptors on a postsynaptic neuron's membrane, transiently altering its conductance. After it is released, the replacement of a neurotransmitter vesicle takes time and the depletion of vesicles can prevent subsequent action potentials from eliciting a postsynaptic response, an effect that represents a form of short term synaptic depression. When a vesicle is available for release, an action potential elicits its release probabilistically and depleted vesicles are replenished randomly in time, making the transmission of presynaptic signals inherently unreliable. We analyze a mathematical model of vesicle release and recovery to understand how signals encoded in sequences of presynaptic action potentials are reflected in the fluctuations of a postsynaptic neuron's conductance. We find that slow modulations in the rate of presynaptic action potentials are more difficult for a postsynaptic neuron to detect than faster modulations. This phenomenon is only observed when randomness in vesicle release and replacement is taken into account. Thus, by including stochasticity in the workings of synaptic dynamics we give new qualitative understanding to how information is transferred in the nervous system.

Suggested Citation

  • Robert Rosenbaum & Jonathan Rubin & Brent Doiron, 2012. "Short Term Synaptic Depression Imposes a Frequency Dependent Filter on Synaptic Information Transfer," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-18, June.
  • Handle: RePEc:plo:pcbi00:1002557
    DOI: 10.1371/journal.pcbi.1002557
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002557
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002557&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel L. Cook & Peter C. Schwindt & Lucinda A. Grande & William J. Spain, 2003. "Synaptic depression in the localization of sound," Nature, Nature, vol. 421(6918), pages 66-70, January.
    2. Jason S. Rothman & Laurence Cathala & Volker Steuber & R. Angus Silver, 2009. "Synaptic depression enables neuronal gain control," Nature, Nature, vol. 457(7232), pages 1015-1018, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Dongpo & Ma, Linyi & Song, Zigen & Zheng, Zhaowen & Cheng, Lifang & Liu, Ming, 2024. "Multiple bifurcations of a time-delayed coupled FitzHugh–Rinzel neuron system with chemical and electrical couplings," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua H Goldwyn & Bradley R Slabe & Joseph B Travers & David Terman, 2018. "Gain control with A-type potassium current: IA as a switch between divisive and subtractive inhibition," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-23, July.
    2. Corentin Massot & Adam D Schneider & Maurice J Chacron & Kathleen E Cullen, 2012. "The Vestibular System Implements a Linear–Nonlinear Transformation In Order to Encode Self-Motion," PLOS Biology, Public Library of Science, vol. 10(7), pages 1-20, July.
    3. A. Barri & M. T. Wiechert & M. Jazayeri & D. A. DiGregorio, 2022. "Synaptic basis of a sub-second representation of time in a neural circuit model," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Amanda M. Perozzo & Jochen Schwenk & Aichurok Kamalova & Terunaga Nakagawa & Bernd Fakler & Derek Bowie, 2023. "GSG1L-containing AMPA receptor complexes are defined by their spatiotemporal expression, native interactome and allosteric sites," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.