Google Goes Cancer: Improving Outcome Prediction for Cancer Patients by Network-Based Ranking of Marker Genes
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pcbi.1002511
Download full text from publisher
References listed on IDEAS
- Laura J. van 't Veer & Hongyue Dai & Marc J. van de Vijver & Yudong D. He & Augustinus A. M. Hart & Mao Mao & Hans L. Peterse & Karin van der Kooy & Matthew J. Marton & Anke T. Witteveen & George J. S, 2002. "Gene expression profiling predicts clinical outcome of breast cancer," Nature, Nature, vol. 415(6871), pages 530-536, January.
- Tibshirani Robert J. & Efron Brad, 2002. "Pre-validation and inference in microarrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 1(1), pages 1-20, August.
- Scott L. Pomeroy & Pablo Tamayo & Michelle Gaasenbeek & Lisa M. Sturla & Michael Angelo & Margaret E. McLaughlin & John Y. H. Kim & Liliana C. Goumnerova & Peter M. Black & Ching Lau & Jeffrey C. Alle, 2002. "Prediction of central nervous system embryonal tumour outcome based on gene expression," Nature, Nature, vol. 415(6870), pages 436-442, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yupeng Cun & Holger Fröhlich, 2013. "Network and Data Integration for Biomarker Signature Discovery via Network Smoothed T-Statistics," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-9, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lama, Nicola & Boracchi, Patrizia & Biganzoli, Elia, 2009. "Exploration of distributional models for a novel intensity-dependent normalization procedure in censored gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1906-1922, March.
- Tibshirani Robert J., 2009. "Univariate Shrinkage in the Cox Model for High Dimensional Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-20, April.
- Jing Zhang & Qihua Wang & Xuan Wang, 2022. "Surrogate-variable-based model-free feature screening for survival data under the general censoring mechanism," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 379-397, April.
- Gaorong Li & Liugen Xue & Heng Lian, 2012. "SCAD-penalised generalised additive models with non-polynomial dimensionality," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 681-697.
- Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
- Sijia Huang & Cameron Yee & Travers Ching & Herbert Yu & Lana X Garmire, 2014. "A Novel Model to Combine Clinical and Pathway-Based Transcriptomic Information for the Prognosis Prediction of Breast Cancer," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-15, September.
- Lian, Heng & Du, Pang & Li, YuanZhang & Liang, Hua, 2014. "Partially linear structure identification in generalized additive models with NP-dimensionality," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 197-208.
- Jan, Budczies & Kosztyla, Daniel & von Törne, Christian & Stenzinger, Albrecht & Darb-Esfahani, Silvia & Dietel, Manfred & Denkert, Carsten, 2014. "cancerclass: An R Package for Development and Validation of Diagnostic Tests from High-Dimensional Molecular Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(i01).
- Zhaoliang Wang & Liugen Xue & Gaorong Li & Fei Lu, 2019. "Spline estimator for ultra-high dimensional partially linear varying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 657-677, June.
- Jun Yao & Qi Zhao & Ying Yuan & Li Zhang & Xiaoming Liu & W K Alfred Yung & John N Weinstein, 2012. "Identification of Common Prognostic Gene Expression Signatures with Biological Meanings from Microarray Gene Expression Datasets," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-11, September.
- Lian, I.B. & Chang, C.J. & Liang, Y.J. & Yang, M.J. & Fann, C.S.J., 2007. "Identifying differentially expressed genes in dye-swapped microarray experiments of small sample size," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2602-2620, February.
- Garrett Green & Ruben Carmona & Kaveh Zakeri & Chih-Han Lee & Saif Borgan & Zaid Marhoon & Andrew Sharabi & Loren K Mell, 2016. "Specificity of Genetic Biomarker Studies in Cancer Research: A Systematic Review," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-7, July.
- Grace Y. Yi & Wenqing He & Raymond. J. Carroll, 2022. "Feature screening with large‐scale and high‐dimensional survival data," Biometrics, The International Biometric Society, vol. 78(3), pages 894-907, September.
- Dong, Kai & Pang, Herbert & Tong, Tiejun & Genton, Marc G., 2016. "Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 127-142.
- Khan Md Hasinur Rahaman & Bhadra Anamika & Howlader Tamanna, 2019. "Stability selection for lasso, ridge and elastic net implemented with AFT models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(5), pages 1-14, October.
- Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
- Lida Qiu & Deyong Kang & Chuan Wang & Wenhui Guo & Fangmeng Fu & Qingxiang Wu & Gangqin Xi & Jiajia He & Liqin Zheng & Qingyuan Zhang & Xiaoxia Liao & Lianhuang Li & Jianxin Chen & Haohua Tu, 2022. "Intratumor graph neural network recovers hidden prognostic value of multi-biomarker spatial heterogeneity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
- Guan-Hua Huang & Su-Mei Wang & Chung-Chu Hsu, 2011. "Optimization-Based Model Fitting for Latent Class and Latent Profile Analyses," Psychometrika, Springer;The Psychometric Society, vol. 76(4), pages 584-611, October.
- Foucher Yohann & Danger Richard, 2012. "Time Dependent ROC Curves for the Estimation of True Prognostic Capacity of Microarray Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(6), pages 1-22, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002511. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.