Author
Listed:
- Julia Romanowska
- J Andrew McCammon
- Joanna Trylska
Abstract
Paromomycin is an aminoglycosidic antibiotic that targets the RNA of the bacterial small ribosomal subunit. It binds in the A-site, which is one of the three tRNA binding sites, and affects translational fidelity by stabilizing two adenines (A1492 and A1493) in the flipped-out state. Experiments have shown that various mutations in the A-site result in bacterial resistance to aminoglycosides. In this study, we performed multiple molecular dynamics simulations of the mutated A-site RNA fragment in explicit solvent to analyze changes in the physicochemical features of the A-site that were introduced by substitutions of specific bases. The simulations were conducted for free RNA and in complex with paromomycin. We found that the specific mutations affect the shape and dynamics of the binding cleft as well as significantly alter its electrostatic properties. The most pronounced changes were observed in the U1406C∶U1495A mutant, where important hydrogen bonds between the RNA and paromomycin were disrupted. The present study aims to clarify the underlying physicochemical mechanisms of bacterial resistance to aminoglycosides due to target mutations. Author Summary: In hospitals throughout the world, aminoglycosidic antibiotics are used to combat even the most severe bacterial infections. However, the continuous emergence of resistant bacteria has created an urgent need to improve these antibiotics. Aminoglycosides bind to bacterial ribosomal RNA. Experiments have shown that specific point mutations in the RNA confer high resistance against aminoglycosides in bacteria. We performed molecular dynamics simulations of the aminoglycosidic binding site model after introducing various mutations. Here, we show that even single nucleotide substitutions can significantly change the physicochemical features of the binding site. In addition, we hypothesize why certain mutations result in bacterial resistance to aminoglycosides.
Suggested Citation
Julia Romanowska & J Andrew McCammon & Joanna Trylska, 2011.
"Understanding the Origins of Bacterial Resistance to Aminoglycosides through Molecular Dynamics Mutational Study of the Ribosomal A-Site,"
PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-16, July.
Handle:
RePEc:plo:pcbi00:1002099
DOI: 10.1371/journal.pcbi.1002099
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002099. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.