IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000913.html
   My bibliography  Save this article

A Mechanistic View of the Role of E3 in Sumoylation

Author

Listed:
  • Melda Tozluoğlu
  • Ezgi Karaca
  • Ruth Nussinov
  • Türkan Haliloğlu

Abstract

Sumoylation, the covalent attachment of SUMO (Small Ubiquitin-Like Modifier) to proteins, differs from other Ubl (Ubiquitin-like) pathways. In sumoylation, E2 ligase Ubc9 can function without E3 enzymes, albeit with lower reaction efficiency. Here, we study the mechanism through which E3 ligase RanBP2 triggers target recognition and catalysis by E2 Ubc9. Two mechanisms were proposed for sumoylation. While in both the first step involves Ubc9 conjugation to SUMO, the subsequent sequence of events differs: in the first E2-SUMO forms a complex with the target and E3, followed by SUMO transfer to the target. In the second, Ubc9-SUMO binds to the target and facilitates SUMO transfer without E3. Using dynamic correlations obtained from explicit solvent molecular dynamic simulations we illustrate the key roles played by allostery in both mechanisms. Pre-existence of conformational states explains the experimental observations that sumoylation can occur without E3, even though at a reduced rate. Furthermore, we propose a mechanism for enhancement of sumoylation by E3. Analysis of the conformational ensembles of the complex of E2 conjugated to SUMO illustrates that the E2 enzyme is already largely pre-organized for target binding and catalysis; E3 binding shifts the equilibrium and enhances these pre-existing populations. We further observe that E3 binding regulates allosterically the key residues in E2, Ubc9 Asp100/Lys101 E2, for the target recognition.Author Summary: Post-translational modifications constitute key regulatory mechanisms in the cell. One of these modifications is the tagging of the target protein with a smaller molecule. SUMO is such a ubiquitin-like tag protein, and sumoylation is the process of tagging proteins with SUMO. The malfunctioning of sumoylation is linked with diseases such as Alzheimer's, Parkinson's, and cancer. Based on experimental observations, two paths were suggested for sumoylation, the first and more efficient involves the E1, E2 and E3 enzymes; the second only the E1 and E2. Here we investigate these alternative paths of sumoylation. Our results offer an explanation for how sumoylation can take place with only the E1 and E2 enzymes, and for the mechanistic role of E3. They emphasize that E2 bound to SUMO is already pre-organized for the transfer of SUMO to a target protein and E3 binding further stabilizes the conformations, shifting the ensemble and thus increasing the efficiency of the sumoylation.

Suggested Citation

  • Melda Tozluoğlu & Ezgi Karaca & Ruth Nussinov & Türkan Haliloğlu, 2010. "A Mechanistic View of the Role of E3 in Sumoylation," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-10, August.
  • Handle: RePEc:plo:pcbi00:1000913
    DOI: 10.1371/journal.pcbi.1000913
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000913
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000913&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000913?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Reverter & Christopher D. Lima, 2005. "Insights into E3 ligase activity revealed by a SUMO–RanGAP1–Ubc9–Nup358 complex," Nature, Nature, vol. 435(7042), pages 687-692, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nathalia Varejão & Jara Lascorz & Joan Codina-Fabra & Gemma Bellí & Helena Borràs-Gas & Jordi Torres-Rosell & David Reverter, 2021. "Structural basis for the E3 ligase activity enhancement of yeast Nse2 by SUMO-interacting motifs," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.