IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v435y2005i7042d10.1038_nature03588.html
   My bibliography  Save this article

Insights into E3 ligase activity revealed by a SUMO–RanGAP1–Ubc9–Nup358 complex

Author

Listed:
  • David Reverter

    (Sloan-Kettering Institute)

  • Christopher D. Lima

    (Sloan-Kettering Institute)

Abstract

SUMO-1 (for small ubiquitin-related modifier) belongs to the ubiquitin (Ub) and ubiquitin-like (Ubl) protein family. SUMO conjugation occurs on specific lysine residues within protein targets, regulating pathways involved in differentiation, apoptosis, the cell cycle and responses to stress by altering protein function through changes in activity or cellular localization or by protecting substrates from ubiquitination1,2. Ub/Ubl conjugation occurs in sequential steps and requires the concerted action of E2 conjugating proteins and E3 ligases1,2. In addition to being a SUMO E3, the nucleoporin Nup358/RanBP2 localizes SUMO-conjugated RanGAP1 to the cytoplasmic face of the nuclear pore complex by means of interactions in a complex that also includes Ubc9, the SUMO E2 conjugating protein3,4,5,6. Here we describe the 3.0-Å crystal structure of a four-protein complex of Ubc9, a Nup358/RanBP2 E3 ligase domain (IR1-M) and SUMO-1 conjugated to the carboxy-terminal domain of RanGAP1. Structural insights, combined with biochemical and kinetic data obtained with additional substrates, support a model in which Nup358/RanBP2 acts as an E3 by binding both SUMO and Ubc9 to position the SUMO–E2-thioester in an optimal orientation to enhance conjugation.

Suggested Citation

  • David Reverter & Christopher D. Lima, 2005. "Insights into E3 ligase activity revealed by a SUMO–RanGAP1–Ubc9–Nup358 complex," Nature, Nature, vol. 435(7042), pages 687-692, June.
  • Handle: RePEc:nat:nature:v:435:y:2005:i:7042:d:10.1038_nature03588
    DOI: 10.1038/nature03588
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03588
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03588?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melda Tozluoğlu & Ezgi Karaca & Ruth Nussinov & Türkan Haliloğlu, 2010. "A Mechanistic View of the Role of E3 in Sumoylation," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-10, August.
    2. Nathalia Varejão & Jara Lascorz & Joan Codina-Fabra & Gemma Bellí & Helena Borràs-Gas & Jordi Torres-Rosell & David Reverter, 2021. "Structural basis for the E3 ligase activity enhancement of yeast Nse2 by SUMO-interacting motifs," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:435:y:2005:i:7042:d:10.1038_nature03588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.