IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000828.html
   My bibliography  Save this article

Plato's Cave Algorithm: Inferring Functional Signaling Networks from Early Gene Expression Shadows

Author

Listed:
  • Yishai Shimoni
  • Marc Y Fink
  • Soon-gang Choi
  • Stuart C Sealfon

Abstract

Improving the ability to reverse engineer biochemical networks is a major goal of systems biology. Lesions in signaling networks lead to alterations in gene expression, which in principle should allow network reconstruction. However, the information about the activity levels of signaling proteins conveyed in overall gene expression is limited by the complexity of gene expression dynamics and of regulatory network topology. Two observations provide the basis for overcoming this limitation: a. genes induced without de-novo protein synthesis (early genes) show a linear accumulation of product in the first hour after the change in the cell's state; b. The signaling components in the network largely function in the linear range of their stimulus-response curves. Therefore, unlike most genes or most time points, expression profiles of early genes at an early time point provide direct biochemical assays that represent the activity levels of upstream signaling components. Such expression data provide the basis for an efficient algorithm (Plato's Cave algorithm; PLACA) to reverse engineer functional signaling networks. Unlike conventional reverse engineering algorithms that use steady state values, PLACA uses stimulated early gene expression measurements associated with systematic perturbations of signaling components, without measuring the signaling components themselves. Besides the reverse engineered network, PLACA also identifies the genes detecting the functional interaction, thereby facilitating validation of the predicted functional network. Using simulated datasets, the algorithm is shown to be robust to experimental noise. Using experimental data obtained from gonadotropes, PLACA reverse engineered the interaction network of six perturbed signaling components. The network recapitulated many known interactions and identified novel functional interactions that were validated by further experiment. PLACA uses the results of experiments that are feasible for any signaling network to predict the functional topology of the network and to identify novel relationships.Author Summary: Elucidating the biochemical interactions in living cells is essential to understanding their behavior under various external conditions. Some of these interactions occur between signaling components with many active states, and their activity levels may be difficult to measure directly. However, most methods to reverse engineer interaction networks rely on measuring gene activity at steady state under various cellular stimuli. Such gene measurements therefore ignore the intermediate effects of signaling components, and cannot reliably convey the interactions between the signaling components themselves. We propose using the changes in activity of early genes shortly after the stimulus to infer the functional interactions between the unmeasured signaling components. The change in expression in such genes at these times is directly and linearly affected by the signaling components, since there is insufficient time for other genes to be transcribed and interfere with the early genes' expression. We present an algorithm that uses such measurements to reverse engineer the functional interaction network between signaling components, and also provides a means for testing these predictions. The algorithm therefore uses feasible experiments to reconstruct functional networks. We applied the algorithm to experimental measurements and uncovered known interactions, as well as novel interactions that were then confirmed experimentally.

Suggested Citation

  • Yishai Shimoni & Marc Y Fink & Soon-gang Choi & Stuart C Sealfon, 2010. "Plato's Cave Algorithm: Inferring Functional Signaling Networks from Early Gene Expression Shadows," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-13, June.
  • Handle: RePEc:plo:pcbi00:1000828
    DOI: 10.1371/journal.pcbi.1000828
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000828
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000828&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000828?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yishai Shimoni & Shoshy Altuvia & Hanah Margalit & Ofer Biham, 2009. "Stochastic Analysis of the SOS Response in Escherichia coli," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-7, May.
    2. Chris J Needham & James R Bradford & Andrew J Bulpitt & David R Westhead, 2007. "A Primer on Learning in Bayesian Networks for Computational Biology," PLOS Computational Biology, Public Library of Science, vol. 3(8), pages 1-8, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin-Fink, Nicole & Reilly, Brian K., 2017. "A road map for developing and applying object-oriented bayesian networks to “WICKED” problems," Ecological Modelling, Elsevier, vol. 360(C), pages 27-44.
    2. Alessandro Ambrosi & Claudia Cattoglio & Clelia Di Serio, 2008. "Retroviral Integration Process in the Human Genome: Is It Really Non-Random? A New Statistical Approach," PLOS Computational Biology, Public Library of Science, vol. 4(8), pages 1-6, August.
    3. J. H. Smid & A. N. Swart & A. H. Havelaar & A. Pielaat, 2011. "A Practical Framework for the Construction of a Biotracing Model: Application to Salmonella in the Pork Slaughter Chain," Risk Analysis, John Wiley & Sons, vol. 31(9), pages 1434-1450, September.
    4. Rajesh Ramaswamy & Ivo F Sbalzarini & Nélido González-Segredo, 2011. "Noise-Induced Modulation of the Relaxation Kinetics around a Non-Equilibrium Steady State of Non-Linear Chemical Reaction Networks," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-10, January.
    5. Juan A G Ranea & Ian Morilla & Jon G Lees & Adam J Reid & Corin Yeats & Andrew B Clegg & Francisca Sanchez-Jimenez & Christine Orengo, 2010. "Finding the “Dark Matter” in Human and Yeast Protein Network Prediction and Modelling," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-14, September.
    6. Paula Laccourreye & Concha Bielza & Pedro Larrañaga, 2022. "Explainable Machine Learning for Longitudinal Multi-Omic Microbiome," Mathematics, MDPI, vol. 10(12), pages 1-23, June.
    7. Jumeniyaz Seydehmet & Guang Hui Lv & Ilyas Nurmemet & Tayierjiang Aishan & Abdulla Abliz & Mamat Sawut & Abdugheni Abliz & Mamattursun Eziz, 2018. "Model Prediction of Secondary Soil Salinization in the Keriya Oasis, Northwest China," Sustainability, MDPI, vol. 10(3), pages 1-22, February.
    8. Kaghazchi, Afsaneh & Hashemy Shahdany, S. Mehdy & Roozbahani, Abbas, 2021. "Simulation and evaluation of agricultural water distribution and delivery systems with a Hybrid Bayesian network model," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Yishai Shimoni & German Nudelman & Fernand Hayot & Stuart C Sealfon, 2011. "Multi-Scale Stochastic Simulation of Diffusion-Coupled Agents and Its Application to Cell Culture Simulation," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.