IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000751.html
   My bibliography  Save this article

Coordinate Dependence of Variability Analysis

Author

Listed:
  • Dagmar Sternad
  • Se-Woong Park
  • Hermann Müller
  • Neville Hogan

Abstract

Analysis of motor performance variability in tasks with redundancy affords insight about synergies underlying central nervous system (CNS) control. Preferential distribution of variability in ways that minimally affect task performance suggests sophisticated neural control. Unfortunately, in the analysis of variability the choice of coordinates used to represent multi-dimensional data may profoundly affect analysis, introducing an arbitrariness which compromises its conclusions. This paper assesses the influence of coordinates. Methods based on analyzing a covariance matrix are fundamentally dependent on an investigator's choices. Two reasons are identified: using anisotropy of a covariance matrix as evidence of preferential distribution of variability; and using orthogonality to quantify relevance of variability to task performance. Both are exquisitely sensitive to coordinates. Unless coordinates are known a priori, these methods do not support unambiguous inferences about CNS control. An alternative method uses a two-level approach where variability in task execution (expressed in one coordinate frame) is mapped by a function to its result (expressed in another coordinate frame). An analysis of variability in execution using this function to quantify performance at the level of results offers substantially less sensitivity to coordinates than analysis of a covariance matrix of execution variables. This is an initial step towards developing coordinate-invariant analysis methods for movement neuroscience.Author Summary: Over the past decade the identification of synergies has become a prominent theme in motor neuroscience. Like other aspects of neural organization (e.g., vision) the control of coordinated movement is almost certainly hierarchical with synergies a key feature of this hypothesis. In pursuit of identifying synergies, whether flexible or hard-wired in biomechanical or physiological structures, many studies have analyzed variability with techniques of dimensionality reduction such as principal component analysis. Results have been interpreted as evidence for controlled variables in motor control. Our paper demonstrates that such analyses and conclusions based on these methods are exquisitely sensitive to the coordinates of the variables that are the basis for this analysis. As these coordinates are often chosen for convenience of measurement or analysis, any conclusions about neural control are therefore ambiguous at best. The development of coordinate-independent analyses was an important step in the development of modern physics. Here we highlight the problems induced by coordinate-dependency in studies of neural control and present initial steps towards coordinate-independent analyses relevant to computational biology. We critically examine an alternative method proposed to analyze variability for identification of structure and show that it is significantly less sensitive to assumed coordinates than conventional analyses.

Suggested Citation

  • Dagmar Sternad & Se-Woong Park & Hermann Müller & Neville Hogan, 2010. "Coordinate Dependence of Variability Analysis," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-16, April.
  • Handle: RePEc:plo:pcbi00:1000751
    DOI: 10.1371/journal.pcbi.1000751
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000751
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000751&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000751?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    2. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dagmar Sternad & Masaki O Abe & Xiaogang Hu & Hermann Müller, 2011. "Neuromotor Noise, Error Tolerance and Velocity-Dependent Costs in Skilled Performance," PLOS Computational Biology, Public Library of Science, vol. 7(9), pages 1-15, September.
    2. Julius Verrel & Martin Lövdén & Ulman Lindenberger, 2012. "Older Adults Show Preserved Equilibrium but Impaired Step Length Control in Motor-Equivalent Stabilization of Gait," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-8, December.
    3. Guy Gaziv & Lior Noy & Yuvalal Liron & Uri Alon, 2017. "A reduced-dimensionality approach to uncovering dyadic modes of body motion in conversations," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-23, January.
    4. Paolo Tommasino & Antonella Maselli & Domenico Campolo & Francesco Lacquaniti & Andrea d’Avella, 2021. "A Hessian-based decomposition characterizes how performance in complex motor skills depends on individual strategy and variability," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-32, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Lingsong & Lu, Shu & Marron, J.S., 2015. "Nested nonnegative cone analysis," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 100-110.
    2. Lee, Changhun & Lim, Chiehyeon, 2021. "From technological development to social advance: A review of Industry 4.0 through machine learning," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    3. ter Braak, Cajo J.F. & Kourmpetis, Yiannis & Kiers, Henk A.L. & Bink, Marco C.A.M., 2009. "Approximating a similarity matrix by a latent class model: A reappraisal of additive fuzzy clustering," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3183-3193, June.
    4. Xiangguang Dai & Chuandong Li & Biqun Xiang, 2018. "Graph Sparse Nonnegative Matrix Factorization Algorithm Based on the Inertial Projection Neural Network," Complexity, Hindawi, vol. 2018, pages 1-12, March.
    5. Juan Carlos Chávez & Felipe J. Fonseca & Manuel Gómez-Zaldívar, 2017. "Resoluciones de disputas comerciales y desempeño económico regional en México. (Commercial Disputes Resolution and Regional Economic Performance in Mexico)," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(1), pages 79-93, May.
    6. Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
    7. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    8. Yan Yu Chen & Chun-Cheih Chao & Fu-Chen Liu & Po-Chen Hsu & Hsueh-Fen Chen & Shih-Chi Peng & Yung-Jen Chuang & Chung-Yu Lan & Wen-Ping Hsieh & David Shan Hill Wong, 2013. "Dynamic Transcript Profiling of Candida albicans Infection in Zebrafish: A Pathogen-Host Interaction Study," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-16, September.
    9. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    10. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    11. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    12. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    13. Simplice A. Asongu & Nicholas M. Odhiambo, 2019. "Governance, capital flight and industrialisation in Africa," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-22, December.
    14. M. J. Aziakpono & S. Kleimeier & H. Sander, 2012. "Banking market integration in the SADC countries: evidence from interest rate analyses," Applied Economics, Taylor & Francis Journals, vol. 44(29), pages 3857-3876, October.
    15. Bianca Maria Colosimo & Luca Pagani & Marco Grasso, 2024. "Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 429-447, January.
    16. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    17. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
    18. Ionela Munteanu & Adriana Grigorescu & Elena Condrea & Elena Pelinescu, 2020. "Convergent Insights for Sustainable Development and Ethical Cohesion: An Empirical Study on Corporate Governance in Romanian Public Entities," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    19. Daniel Boss & Annick Hoffmann & Benjamin Rappaz & Christian Depeursinge & Pierre J Magistretti & Dimitri Van de Ville & Pierre Marquet, 2012. "Spatially-Resolved Eigenmode Decomposition of Red Blood Cells Membrane Fluctuations Questions the Role of ATP in Flickering," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-10, August.
    20. Doukas, Haris & Papadopoulou, Alexandra & Savvakis, Nikolaos & Tsoutsos, Theocharis & Psarras, John, 2012. "Assessing energy sustainability of rural communities using Principal Component Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1949-1957.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.