IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000577.html
   My bibliography  Save this article

Analyzing Short-Term Noise Dependencies of Spike-Counts in Macaque Prefrontal Cortex Using Copulas and the Flashlight Transformation

Author

Listed:
  • Arno Onken
  • Steffen Grünewälder
  • Matthias H J Munk
  • Klaus Obermayer

Abstract

Simultaneous spike-counts of neural populations are typically modeled by a Gaussian distribution. On short time scales, however, this distribution is too restrictive to describe and analyze multivariate distributions of discrete spike-counts. We present an alternative that is based on copulas and can account for arbitrary marginal distributions, including Poisson and negative binomial distributions as well as second and higher-order interactions. We describe maximum likelihood-based procedures for fitting copula-based models to spike-count data, and we derive a so-called flashlight transformation which makes it possible to move the tail dependence of an arbitrary copula into an arbitrary orthant of the multivariate probability distribution. Mixtures of copulas that combine different dependence structures and thereby model different driving processes simultaneously are also introduced. First, we apply copula-based models to populations of integrate-and-fire neurons receiving partially correlated input and show that the best fitting copulas provide information about the functional connectivity of coupled neurons which can be extracted using the flashlight transformation. We then apply the new method to data which were recorded from macaque prefrontal cortex using a multi-tetrode array. We find that copula-based distributions with negative binomial marginals provide an appropriate stochastic model for the multivariate spike-count distributions rather than the multivariate Poisson latent variables distribution and the often used multivariate normal distribution. The dependence structure of these distributions provides evidence for common inhibitory input to all recorded stimulus encoding neurons. Finally, we show that copula-based models can be successfully used to evaluate neural codes, e.g., to characterize stimulus-dependent spike-count distributions with information measures. This demonstrates that copula-based models are not only a versatile class of models for multivariate distributions of spike-counts, but that those models can be exploited to understand functional dependencies.Author Summary: The brain has an enormous number of neurons that do not work alone but in an ensemble. Yet, mostly individual neurons were measured in the past and therefore models were restricted to independent neurons. With the advent of new multi-electrode techniques, however, it becomes possible to measure a great number of neurons simultaneously. As a result, models of how populations of neurons co-vary are becoming increasingly important. Here, we describe such a framework based on so-called copulas. Copulas allow to separate the neural variation structure of the population from the variability of the individual neurons. Contrary to standard models, versatile dependence structures can be described using this approach. We explore what additional information is provided by the detailed dependence. For simulated neurons, we show that the variation structure of the population allows inference of the underlying connectivity structure of the neurons. The power of the approach is demonstrated on a memory experiment in macaque monkey. We show that our framework describes the measurements better than the standard models and identify possible network connections of the measured neurons.

Suggested Citation

  • Arno Onken & Steffen Grünewälder & Matthias H J Munk & Klaus Obermayer, 2009. "Analyzing Short-Term Noise Dependencies of Spike-Counts in Macaque Prefrontal Cortex Using Copulas and the Flashlight Transformation," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-13, November.
  • Handle: RePEc:plo:pcbi00:1000577
    DOI: 10.1371/journal.pcbi.1000577
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000577
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000577&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elad Schneidman & Michael J. Berry & Ronen Segev & William Bialek, 2006. "Weak pairwise correlations imply strongly correlated network states in a neural population," Nature, Nature, vol. 440(7087), pages 1007-1012, April.
    2. Ines Fortin & Christoph Kuzmics, 2002. "Tail‐dependence in stock‐return pairs," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 11(2), pages 89-107, April.
    3. Ling Hu, 2006. "Dependence patterns across financial markets: a mixed copula approach," Applied Financial Economics, Taylor & Francis Journals, vol. 16(10), pages 717-729.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcel Wollschlager & Rudi Schafer, 2015. "Impact of non-stationarity on estimating and modeling empirical copulas of daily stock returns," Papers 1506.08054, arXiv.org.
    2. Arno Onken & Valentin Dragoi & Klaus Obermayer, 2012. "A Maximum Entropy Test for Evaluating Higher-Order Correlations in Spike Counts," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-12, June.
    3. Hideaki Shimazaki & Shun-ichi Amari & Emery N Brown & Sonja Grün, 2012. "State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-27, March.
    4. Enrico Bibbona & Laura Sacerdote & Emiliano Torre, 2016. "A Copula-Based Method to Build Diffusion Models with Prescribed Marginal and Serial Dependence," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 765-783, September.
    5. Savita Jain & Suresh K. Sharma & Kanchan Jain, 2022. "Using Copulas for Bayesian Meta-analysis," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 23-41, April.
    6. Kim, Daeyoung & Kim, Jong-Min & Liao, Shu-Min & Jung, Yoon-Sung, 2013. "Mixture of D-vine copulas for modeling dependence," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 1-19.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janani Sri S. & Parthajit Kayal & G. Balasubramanian, 2022. "Can Equity be Safe-haven for Investment?," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 21(1), pages 32-63, March.
    2. Lai, YiHao & Tseng, Jen-Ching, 2010. "The role of Chinese stock market in global stock markets: A safe haven or a hedge?," International Review of Economics & Finance, Elsevier, vol. 19(2), pages 211-218, April.
    3. YiHao Lai, 2008. "Does Asymmetric Dependence Structure Matter? A Value-at-Risk View," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 7(3), pages 249-268, December.
    4. Ning, Cathy & Wirjanto, Tony S., 2009. "Extreme return-volume dependence in East-Asian stock markets: A copula approach," Finance Research Letters, Elsevier, vol. 6(4), pages 202-209, December.
    5. Zhu, Pengfei & Lu, Tuantuan & Shang, Yue & Zhang, Zerong & Wei, Yu, 2023. "Can China's national carbon trading market hedge the risks of light and medium crude oil? A comparative analysis with the European carbon market," Finance Research Letters, Elsevier, vol. 58(PA).
    6. Burda Martin & Bélisle Louis, 2019. "Copula multivariate GARCH model with constrained Hamiltonian Monte Carlo," Dependence Modeling, De Gruyter, vol. 7(1), pages 133-149, January.
    7. Kai Ma & Shubing Hu & Jie Yang & Chunxia Dou & Josep M. Guerrero, 2017. "Energy Trading and Pricing in Microgrids with Uncertain Energy Supply: A Three-Stage Hierarchical Game Approach," Energies, MDPI, vol. 10(5), pages 1-16, May.
    8. Sancetta, A., 2005. "Copula Based Monte Carlo Integration in Financial Problems," Cambridge Working Papers in Economics 0506, Faculty of Economics, University of Cambridge.
    9. Chia-Hsun Hsieh & Shian-Chang Huang, 2012. "Time-Varying Dependency and Structural Changes in Currency Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(2), pages 94-127, March.
    10. Zongwu Cai & Guannan Liu & Wei Long & Xuelong Luo, 2024. "Semiparametric Conditional Mixture Copula Models with Copula Selection," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202401, University of Kansas, Department of Economics, revised Jan 2024.
    11. Dimic, Nebojsa & Piljak, Vanja & Swinkels, Laurens & Vulanovic, Milos, 2021. "The structure and degree of dependence in government bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    12. Wang Ruihua & Wang Hongjun, 2020. "Correlation Analysis of Stock Market and Fund Market Based on M-Copula-EGARCH-M-GED Model," Journal of Systems Science and Information, De Gruyter, vol. 8(3), pages 240-252, June.
    13. Guobin Fan & Eric Girardin & Wong K. Wong & Yong Zeng, 2015. "The Risk of Individual Stocks’ Tail Dependence with the Market and Its Effect on Stock Returns," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-17, November.
    14. Lipovetsky, Stan, 2018. "Quantum paradigm of probability amplitude and complex utility in entangled discrete choice modeling," Journal of choice modelling, Elsevier, vol. 27(C), pages 62-73.
    15. Paulo Horta, 2013. "Contagion Effects in the European Nyse Euronext Stock Markets in the Context of the 2010 Sovereign Debt Crisis," CEFAGE-UE Working Papers 2013_12, University of Evora, CEFAGE-UE (Portugal).
    16. Mark L Ioffe & Michael J Berry II, 2017. "The structured ‘low temperature’ phase of the retinal population code," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    17. Guo, Peng & Shi, Jing, 2024. "Geopolitical risks, investor sentiment and industry stock market volatility in China: Evidence from a quantile regression approach," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    18. Katarína Bod’ová & Enikő Szép & Nicholas H Barton, 2021. "Dynamic maximum entropy provides accurate approximation of structured population dynamics," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-22, December.
    19. MohammadReza Zahedian & Mahsa Bagherikalhor & Andrey Trufanov & G. Reza Jafari, 2022. "Financial Crisis in the Framework of Non-zero Temperature Balance Theory," Papers 2202.03198, arXiv.org.
    20. Zhu, Bo & Lin, Renda & Deng, Yuanyue & Chen, Pingshe & Chevallier, Julien, 2021. "Intersectoral systemic risk spillovers between energy and agriculture under the financial and COVID-19 crises," Economic Modelling, Elsevier, vol. 105(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.