IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000484.html
   My bibliography  Save this article

Computation of Conformational Coupling in Allosteric Proteins

Author

Listed:
  • Brian A Kidd
  • David Baker
  • Wendy E Thomas

Abstract

In allosteric regulation, an effector molecule binding a protein at one site induces conformational changes, which alter structure and function at a distant active site. Two key challenges in the computational modeling of allostery are the prediction of the structure of one allosteric state starting from the structure of the other, and elucidating the mechanisms underlying the conformational coupling of the effector and active sites. Here we approach these two challenges using the Rosetta high-resolution structure prediction methodology. We find that the method can recapitulate the relaxation of effector-bound forms of single domain allosteric proteins into the corresponding ligand-free states, particularly when sampling is focused on regions known to change conformation most significantly. Analysis of the coupling between contacting pairs of residues in large ensembles of conformations spread throughout the landscape between and around the two allosteric states suggests that the transitions are built up from blocks of tightly coupled interacting sets of residues that are more loosely coupled to one another.Author Summary: A common means of biological regulation is allostery, in which an effector molecule binds to one site on a protein and induces a conformational change which changes activity at a distant active site. Frequently high resolution structures are determined for one state of an allosteric protein but not the other. To probe the allosteric conformational changes in such cases, we describe a computational method for predicting the structure of one allosteric state of a protein starting with knowledge of another. Our method also provides a detailed map of the free energy landscape traversed in an allosteric transition and reveals the coupling between interacting residue pairs that underlies the transition.

Suggested Citation

  • Brian A Kidd & David Baker & Wendy E Thomas, 2009. "Computation of Conformational Coupling in Allosteric Proteins," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-10, August.
  • Handle: RePEc:plo:pcbi00:1000484
    DOI: 10.1371/journal.pcbi.1000484
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000484
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000484&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chun Tang & Charles D. Schwieters & G. Marius Clore, 2007. "Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR," Nature, Nature, vol. 449(7165), pages 1078-1082, October.
    2. Bin Qian & Srivatsan Raman & Rhiju Das & Philip Bradley & Airlie J. McCoy & Randy J. Read & David Baker, 2007. "High-resolution structure prediction and the crystallographic phase problem," Nature, Nature, vol. 450(7167), pages 259-264, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Kalescky & Hongyu Zhou & Jin Liu & Peng Tao, 2016. "Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin F. Peter & Christian Gebhardt & Rebecca Mächtel & Gabriel G. Moya Muñoz & Janin Glaenzer & Alessandra Narducci & Gavin H. Thomas & Thorben Cordes & Gregor Hagelueken, 2022. "Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Shuo Gu & Daniel-Adriano Silva & Luming Meng & Alexander Yue & Xuhui Huang, 2014. "Quantitatively Characterizing the Ligand Binding Mechanisms of Choline Binding Protein Using Markov State Model Analysis," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-11, August.
    3. Sneha Vishwanath & Alexandre G de Brevern & Narayanaswamy Srinivasan, 2018. "Same but not alike: Structure, flexibility and energetics of domains in multi-domain proteins are influenced by the presence of other domains," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-26, February.
    4. Daniel-Adriano Silva & Gregory R Bowman & Alejandro Sosa-Peinado & Xuhui Huang, 2011. "A Role for Both Conformational Selection and Induced Fit in Ligand Binding by the LAO Protein," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-11, May.
    5. Chao Kong & Xiaozhan Qu & Mingming Liu & Weiya Xu & Da Chen & Yanshen Zhang & Shan Zhang & Feng Zhu & Zhenbang Liu & Jianchao Li & Chengdong Huang & Chao Wang, 2023. "Dynamic interactions between E-cadherin and Ankyrin-G mediate epithelial cell polarity maintenance," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Dong Long & Rafael Brüschweiler, 2011. "In Silico Elucidation of the Recognition Dynamics of Ubiquitin," PLOS Computational Biology, Public Library of Science, vol. 7(4), pages 1-9, April.
    7. Kai Wang & Shiyang Long & Pu Tian, 2015. "Hierarchical Conformational Analysis of Native Lysozyme Based on Sub-Millisecond Molecular Dynamics Simulations," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-17, June.
    8. Fabian Paul & Thomas R Weikl, 2016. "How to Distinguish Conformational Selection and Induced Fit Based on Chemical Relaxation Rates," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-17, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.