IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000327.html
   My bibliography  Save this article

T-Cell Epitope Prediction: Rescaling Can Mask Biological Variation between MHC Molecules

Author

Listed:
  • Aidan MacNamara
  • Ulrich Kadolsky
  • Charles R M Bangham
  • Becca Asquith

Abstract

Theoretical methods for predicting CD8+ T-cell epitopes are an important tool in vaccine design and for enhancing our understanding of the cellular immune system. The most popular methods currently available produce binding affinity predictions across a range of MHC molecules. In comparing results between these MHC molecules, it is common practice to apply a normalization procedure known as rescaling, to correct for possible discrepancies between the allelic predictors. Using two of the most popular prediction software packages, NetCTL and NetMHC, we tested the hypothesis that rescaling removes genuine biological variation from the predicted affinities when comparing predictions across a number of MHC molecules. We found that removing the condition of rescaling improved the prediction software's performance both qualitatively, in terms of ranking epitopes, and quantitatively, in the accuracy of their binding affinity predictions. We suggest that there is biologically significant variation among class 1 MHC molecules and find that retention of this variation leads to significantly more accurate epitope prediction.Author Summary: The use of prediction software has become an important tool in increasing our knowledge of infectious disease. It allows us to predict the interaction of molecules involved in an immune response, thereby significantly shortening the lengthy process of experimental elucidation. A high proportion of this software has focused on the response of the immune system against pathogenic viruses. This approach has produced positive results towards vaccine design, results that would be delayed or unobtainable using a traditional experimental approach. The current challenge in immunological prediction software is to predict interacting molecules to a high degree of accuracy. To this end, we have analysed the best software currently available at predicting the interaction between a viral peptide and the MHC class I molecule, an interaction that is vital in the body's defence against viral infection. We have improved the accuracy of this software by challenging the assumption that different MHC class I molecules will bind to the same number of viral peptides. Our method shows a significant improvement in correctly predicting which viral peptides bind to MHC class I molecules.

Suggested Citation

  • Aidan MacNamara & Ulrich Kadolsky & Charles R M Bangham & Becca Asquith, 2009. "T-Cell Epitope Prediction: Rescaling Can Mask Biological Variation between MHC Molecules," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-7, March.
  • Handle: RePEc:plo:pcbi00:1000327
    DOI: 10.1371/journal.pcbi.1000327
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000327
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000327&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bjoern Peters & Huynh-Hoa Bui & Sune Frankild & Morten Nielsen & Claus Lundegaard & Emrah Kostem & Derek Basch & Kasper Lamberth & Mikkel Harndahl & Ward Fleri & Stephen S Wilson & John Sidney & Ole L, 2006. "A Community Resource Benchmarking Predictions of Peptide Binding to MHC-I Molecules," PLOS Computational Biology, Public Library of Science, vol. 2(6), pages 1-11, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Zhang & Peng Wang & Nikitas Papangelopoulos & Ying Xu & Alessandro Sette & Philip E Bourne & Ole Lund & Julia Ponomarenko & Morten Nielsen & Bjoern Peters, 2010. "Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-10, February.
    2. Peng Wang & John Sidney & Courtney Dow & Bianca Mothé & Alessandro Sette & Bjoern Peters, 2008. "A Systematic Assessment of MHC Class II Peptide Binding Predictions and Evaluation of a Consensus Approach," PLOS Computational Biology, Public Library of Science, vol. 4(4), pages 1-10, April.
    3. Morten Nielsen & Claus Lundegaard & Thomas Blicher & Bjoern Peters & Alessandro Sette & Sune Justesen & Søren Buus & Ole Lund, 2008. "Quantitative Predictions of Peptide Binding to Any HLA-DR Molecule of Known Sequence: NetMHCIIpan," PLOS Computational Biology, Public Library of Science, vol. 4(7), pages 1-10, July.
    4. Sinu Paul & Nathan P Croft & Anthony W Purcell & David C Tscharke & Alessandro Sette & Morten Nielsen & Bjoern Peters, 2020. "Benchmarking predictions of MHC class I restricted T cell epitopes in a comprehensively studied model system," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-18, May.
    5. Massimo Andreatta & Claus Schafer-Nielsen & Ole Lund & Søren Buus & Morten Nielsen, 2011. "NNAlign: A Web-Based Prediction Method Allowing Non-Expert End-User Discovery of Sequence Motifs in Quantitative Peptide Data," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-11, November.
    6. Tomer Hertz & Hasan Ahmed & David P Friedrich & Danilo R Casimiro & Steven G Self & Lawrence Corey & M Juliana McElrath & Susan Buchbinder & Helen Horton & Nicole Frahm & Michael N Robertson & Barney , 2013. "HIV-1 Vaccine-Induced T-Cell Reponses Cluster in Epitope Hotspots that Differ from Those Induced in Natural Infection with HIV-1," PLOS Pathogens, Public Library of Science, vol. 9(6), pages 1-14, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.