IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000238.html
   My bibliography  Save this article

Formation and Growth of Oligomers: A Monte Carlo Study of an Amyloid Tau Fragment

Author

Listed:
  • Da-Wei Li
  • Sandipan Mohanty
  • Anders Irbäck
  • Shuanghong Huo

Abstract

Small oligomers formed early in the process of amyloid fibril formation may be the major toxic species in Alzheimer's disease. We investigate the early stages of amyloid aggregation for the tau fragment AcPHF6 (Ac-VQIVYK-NH2) using an implicit solvent all-atom model and extensive Monte Carlo simulations of 12, 24, and 36 chains. A variety of small metastable aggregates form and dissolve until an aggregate of a critical size and conformation arises. However, the stable oligomers, which are β-sheet-rich and feature many hydrophobic contacts, are not always growth-ready. The simulations indicate instead that these supercritical oligomers spend a lengthy period in equilibrium in which considerable reorganization takes place accompanied by exchange of chains with the solution. Growth competence of the stable oligomers correlates with the alignment of the strands in the β-sheets. The larger aggregates seen in our simulations are all composed of two twisted β-sheets, packed against each other with hydrophobic side chains at the sheet–sheet interface. These β-sandwiches show similarities with the proposed steric zipper structure for PHF6 fibrils but have a mixed parallel/antiparallel β-strand organization as opposed to the parallel organization found in experiments on fibrils. Interestingly, we find that the fraction of parallel β-sheet structure increases with aggregate size. We speculate that the reorganization of the β-sheets into parallel ones is an important rate-limiting step in the formation of PHF6 fibrils.Author Summary: It is believed that the self association of certain protein molecules into aggregated structures, known as amyloid fibrils, plays an important role in a variety of human diseases, such as Alzheimer's disease and Parkinson's disease. Although the ability to form such amyloid fibrils is a common property for proteins, the process leading to these fibrils is incompletely understood. The early stages of the process involve small transient heterogeneous structures made of a few protein chains and are especially difficult to characterize. Here we use atomic-level simulations to explore the early part of the aggregation process for a fibril-forming fragment of the protein tau associated with Alzheimer's disease. We find that a multitude of small aggregates, rich in sheetlike structures, form through a nucleation process. Interestingly, a statistically preferred type of aggregate, consisting of two tightly packed sheets, emerges with increasing aggregate size. Growth of these larger aggregates seems to be a slow process that correlates with the emergence of more uniformly ordered sheets. We speculate that reorganization of the protein chains leading to that ordered arrangement is an important bottleneck to amyloid fibril formation for this peptide.

Suggested Citation

  • Da-Wei Li & Sandipan Mohanty & Anders Irbäck & Shuanghong Huo, 2008. "Formation and Growth of Oligomers: A Monte Carlo Study of an Amyloid Tau Fragment," PLOS Computational Biology, Public Library of Science, vol. 4(12), pages 1-12, December.
  • Handle: RePEc:plo:pcbi00:1000238
    DOI: 10.1371/journal.pcbi.1000238
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000238
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000238&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Motomasa Tanaka & Sean R. Collins & Brandon H. Toyama & Jonathan S. Weissman, 2006. "The physical basis of how prion conformations determine strain phenotypes," Nature, Nature, vol. 442(7102), pages 585-589, August.
    2. Mookyung Cheon & Iksoo Chang & Sandipan Mohanty & Leila M Luheshi & Christopher M Dobson & Michele Vendruscolo & Giorgio Favrin, 2007. "Structural Reorganisation and Potential Toxicity of Oligomeric Species Formed during the Assembly of Amyloid Fibrils," PLOS Computational Biology, Public Library of Science, vol. 3(9), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanne Abeln & Michele Vendruscolo & Christopher M Dobson & Daan Frenkel, 2014. "A Simple Lattice Model That Captures Protein Folding, Aggregation and Amyloid Formation," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-8, January.
    2. Andrew C Gill, 2014. "β-Hairpin-Mediated Formation of Structurally Distinct Multimers of Neurotoxic Prion Peptides," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanne Abeln & Daan Frenkel, 2008. "Disordered Flanks Prevent Peptide Aggregation," PLOS Computational Biology, Public Library of Science, vol. 4(12), pages 1-7, December.
    2. Yang-Nim Park & David Morales & Emily H Rubinson & Daniel Masison & Evan Eisenberg & Lois E Greene, 2012. "Differences in the Curing of [PSI+] Prion by Various Methods of Hsp104 Inactivation," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-15, June.
    3. Andrew C Gill, 2014. "β-Hairpin-Mediated Formation of Structurally Distinct Multimers of Neurotoxic Prion Peptides," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-17, January.
    4. Stefan Auer & Filip Meersman & Christopher M Dobson & Michele Vendruscolo, 2008. "A Generic Mechanism of Emergence of Amyloid Protofilaments from Disordered Oligomeric Aggregates," PLOS Computational Biology, Public Library of Science, vol. 4(11), pages 1-7, November.
    5. Sanne Abeln & Michele Vendruscolo & Christopher M Dobson & Daan Frenkel, 2014. "A Simple Lattice Model That Captures Protein Folding, Aggregation and Amyloid Formation," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-8, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.