IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0020575.html
   My bibliography  Save this article

Polymorphic Structures of Alzheimer's β-Amyloid Globulomers

Author

Listed:
  • Xiang Yu
  • Jie Zheng

Abstract

Background: Misfolding and self-assembly of Amyloid-β (Aβ) peptides into amyloid fibrils is pathologically linked to the development of Alzheimer's disease. Polymorphic Aβ structures derived from monomers to intermediate oligomers, protofilaments, and mature fibrils have been often observed in solution. Some aggregates are on-pathway species to amyloid fibrils, while the others are off-pathway species that do not evolve into amyloid fibrils. Both on-pathway and off-pathway species could be biologically relevant species. But, the lack of atomic-level structural information for these Aβ species leads to the difficulty in the understanding of their biological roles in amyloid toxicity and amyloid formation. Methods and Findings: Here, we model a series of molecular structures of Aβ globulomers assembled by monomer and dimer building blocks using our peptide-packing program and explicit-solvent molecular dynamics (MD) simulations. Structural and energetic analysis shows that although Aβ globulomers could adopt different energetically favorable but structurally heterogeneous conformations in a rugged energy landscape, they are still preferentially organized by dynamic dimeric subunits with a hydrophobic core formed by the C-terminal residues independence of initial peptide packing and organization. Such structural organizations offer high structural stability by maximizing peptide-peptide association and optimizing peptide-water solvation. Moreover, curved surface, compact size, and less populated β-structure in Aβ globulomers make them difficult to convert into other high-order Aβ aggregates and fibrils with dominant β-structure, suggesting that they are likely to be off-pathway species to amyloid fibrils. These Aβ globulomers are compatible with experimental data in overall size, subunit organization, and molecular weight from AFM images and H/D amide exchange NMR. Conclusions: Our computationally modeled Aβ globulomers provide useful insights into structure, dynamics, and polymorphic nature of Aβ globulomers which are completely different from Aβ fibrils, suggesting that these globulomers are likely off-pathway species and explaining the independence of the aggregation kinetics between Aβ globulomers and fibrils.

Suggested Citation

  • Xiang Yu & Jie Zheng, 2011. "Polymorphic Structures of Alzheimer's β-Amyloid Globulomers," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-15, June.
  • Handle: RePEc:plo:pone00:0020575
    DOI: 10.1371/journal.pone.0020575
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0020575
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0020575&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0020575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mookyung Cheon & Iksoo Chang & Sandipan Mohanty & Leila M Luheshi & Christopher M Dobson & Michele Vendruscolo & Giorgio Favrin, 2007. "Structural Reorganisation and Potential Toxicity of Oligomeric Species Formed during the Assembly of Amyloid Fibrils," PLOS Computational Biology, Public Library of Science, vol. 3(9), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiyong Park & Byungnam Kahng & Wonmuk Hwang, 2009. "Thermodynamic Selection of Steric Zipper Patterns in the Amyloid Cross-β Spine," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-17, September.
    2. Amol Pawar & Giorgio Favrin, 2008. "Finite Size Effects in Simulations of Protein Aggregation," PLOS ONE, Public Library of Science, vol. 3(7), pages 1-6, July.
    3. Sanne Abeln & Daan Frenkel, 2008. "Disordered Flanks Prevent Peptide Aggregation," PLOS Computational Biology, Public Library of Science, vol. 4(12), pages 1-7, December.
    4. Andrew C Gill, 2014. "β-Hairpin-Mediated Formation of Structurally Distinct Multimers of Neurotoxic Prion Peptides," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-17, January.
    5. Stefan Auer & Filip Meersman & Christopher M Dobson & Michele Vendruscolo, 2008. "A Generic Mechanism of Emergence of Amyloid Protofilaments from Disordered Oligomeric Aggregates," PLOS Computational Biology, Public Library of Science, vol. 4(11), pages 1-7, November.
    6. Sanne Abeln & Michele Vendruscolo & Christopher M Dobson & Daan Frenkel, 2014. "A Simple Lattice Model That Captures Protein Folding, Aggregation and Amyloid Formation," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-8, January.
    7. Da-Wei Li & Sandipan Mohanty & Anders Irbäck & Shuanghong Huo, 2008. "Formation and Growth of Oligomers: A Monte Carlo Study of an Amyloid Tau Fragment," PLOS Computational Biology, Public Library of Science, vol. 4(12), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0020575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.