IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002051.html
   My bibliography  Save this article

A Multiscale Approach to Characterize the Early Aggregation Steps of the Amyloid-Forming Peptide GNNQQNY from the Yeast Prion Sup-35

Author

Listed:
  • Jessica Nasica-Labouze
  • Massimiliano Meli
  • Philippe Derreumaux
  • Giorgio Colombo
  • Normand Mousseau

Abstract

The self-organization of peptides into amyloidogenic oligomers is one of the key events for a wide range of molecular and degenerative diseases. Atomic-resolution characterization of the mechanisms responsible for the aggregation process and the resulting structures is thus a necessary step to improve our understanding of the determinants of these pathologies. To address this issue, we combine the accelerated sampling properties of replica exchange molecular dynamics simulations based on the OPEP coarse-grained potential with the atomic resolution description of interactions provided by all-atom MD simulations, and investigate the oligomerization process of the GNNQQNY for three system sizes: 3-mers, 12-mers and 20-mers. Results for our integrated simulations show a rich variety of structural arrangements for aggregates of all sizes. Elongated fibril-like structures can form transiently in the 20-mer case, but they are not stable and easily interconvert in more globular and disordered forms. Our extensive characterization of the intermediate structures and their physico-chemical determinants points to a high degree of polymorphism for the GNNQQNY sequence that can be reflected at the macroscopic scale. Detailed mechanisms and structures that underlie amyloid aggregation are also provided. Author Summary: The formation of amyloid fibrils is associated with many neurodegenerative diseases such as Alzheimer's, Creutzfeld-Jakob, Parkinson's, the Prion disease and diabetes mellitus. In all cases, proteins misfold to form highly ordered insoluble aggregates called amyloid fibrils that deposit intra- and extracellularly and are resistant to proteases. All proteins are believed to have the instrinsic capability of forming amyloid fibrils that share common specific structural properties that have been observed by X-ray crystallography and by NMR. However, little is known about the aggregation dynamics of amyloid assemblies, and their toxicity mechanism is therefore poorly understood. It is believed that small amyloid oligomers, formed on the aggregation pathway of full amyloid fibrils, are the toxic species. A detailed atomic characterization of the oligomerization process is thus necessary to further our understanding of the amyloid oligomer's toxicity. Our approach here is to study the aggregation dynamics of a 7-residue amyloid peptide GNNQQNY through a combination of numerical techniques. Our results suggest that this amyloid sequence can form fibril-like structures and is polymorphic, which agrees with recent experimental observations. The ability to fully characterize and describe the aggregation pathway of amyloid sequences numerically is key to the development of future drugs to target amyloid oligomers.

Suggested Citation

  • Jessica Nasica-Labouze & Massimiliano Meli & Philippe Derreumaux & Giorgio Colombo & Normand Mousseau, 2011. "A Multiscale Approach to Characterize the Early Aggregation Steps of the Amyloid-Forming Peptide GNNQQNY from the Yeast Prion Sup-35," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-18, May.
  • Handle: RePEc:plo:pcbi00:1002051
    DOI: 10.1371/journal.pcbi.1002051
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002051
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002051&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hilal A. Lashuel & Dean Hartley & Benjamin M. Petre & Thomas Walz & Peter T. Lansbury, 2002. "Amyloid pores from pathogenic mutations," Nature, Nature, vol. 418(6895), pages 291-291, July.
    2. Monica Bucciantini & Elisa Giannoni & Fabrizio Chiti & Fabiana Baroni & Lucia Formigli & Jesús Zurdo & Niccolò Taddei & Giampietro Ramponi & Christopher M. Dobson & Massimo Stefani, 2002. "Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases," Nature, Nature, vol. 416(6880), pages 507-511, April.
    3. Jiyong Park & Byungnam Kahng & Wonmuk Hwang, 2009. "Thermodynamic Selection of Steric Zipper Patterns in the Amyloid Cross-β Spine," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-17, September.
    4. Da-Wei Li & Sandipan Mohanty & Anders Irbäck & Shuanghong Huo, 2008. "Formation and Growth of Oligomers: A Monte Carlo Study of an Amyloid Tau Fragment," PLOS Computational Biology, Public Library of Science, vol. 4(12), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Banerjee & Rajiv K Kar & Aritreyee Datta & Krupakar Parthasarathi & Subhrangsu Chatterjee & Kali P Das & Anirban Bhunia, 2013. "Use of a Small Peptide Fragment as an Inhibitor of Insulin Fibrillation Process: A Study by High and Low Resolution Spectroscopy," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-15, August.
    2. Jungrim Kim & Mincheol Shin & Jeongwoo Kim & Chihyun Park & Sujin Lee & Jaemin Woo & Hyerim Kim & Dongmin Seo & Seokjong Yu & Sanghyun Park, 2018. "CASS: A distributed network clustering algorithm based on structure similarity for large-scale network," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-22, October.
    3. Aaron M Streets & Yannick Sourigues & Ron R Kopito & Ronald Melki & Stephen R Quake, 2013. "Simultaneous Measurement of Amyloid Fibril Formation by Dynamic Light Scattering and Fluorescence Reveals Complex Aggregation Kinetics," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-10, January.
    4. Etienne Maisonneuve & Adrien Ducret & Pierre Khoueiry & Sabrina Lignon & Sonia Longhi & Emmanuel Talla & Sam Dukan, 2009. "Rules Governing Selective Protein Carbonylation," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-12, October.
    5. Mookyung Cheon & Iksoo Chang & Sandipan Mohanty & Leila M Luheshi & Christopher M Dobson & Michele Vendruscolo & Giorgio Favrin, 2007. "Structural Reorganisation and Potential Toxicity of Oligomeric Species Formed during the Assembly of Amyloid Fibrils," PLOS Computational Biology, Public Library of Science, vol. 3(9), pages 1-12, September.
    6. Andrew C Gill, 2014. "β-Hairpin-Mediated Formation of Structurally Distinct Multimers of Neurotoxic Prion Peptides," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-17, January.
    7. Qi Wang & Joshua L Johnson & Nathalie YR Agar & Jeffrey N Agar, 2008. "Protein Aggregation and Protein Instability Govern Familial Amyotrophic Lateral Sclerosis Patient Survival," PLOS Biology, Public Library of Science, vol. 6(7), pages 1-19, July.
    8. Alka Srivastava & Petety V Balaji, 2014. "Interplay of Sequence, Topology and Termini Charge in Determining the Stability of the Aggregates of GNNQQNY Mutants: A Molecular Dynamics Study," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-12, May.
    9. Sanne Abeln & Michele Vendruscolo & Christopher M Dobson & Daan Frenkel, 2014. "A Simple Lattice Model That Captures Protein Folding, Aggregation and Amyloid Formation," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-8, January.
    10. Noah S Bieler & Tuomas P J Knowles & Daan Frenkel & Robert Vácha, 2012. "Connecting Macroscopic Observables and Microscopic Assembly Events in Amyloid Formation Using Coarse Grained Simulations," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-10, October.
    11. Abdul Rouf Mir, 2017. "Scanning Electron Microscopic Analysis of Glycated Histone H2B," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 4(2), pages 12-14, May.
    12. Bente Vestergaard & Minna Groenning & Manfred Roessle & Jette S Kastrup & Marco van de Weert & James M Flink & Sven Frokjaer & Michael Gajhede & Dmitri I Svergun, 2007. "A Helical Structural Nucleus Is the Primary Elongating Unit of Insulin Amyloid Fibrils," PLOS Biology, Public Library of Science, vol. 5(5), pages 1-9, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.