IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0030061.html
   My bibliography  Save this article

DNA Familial Binding Profiles Made Easy: Comparison of Various Motif Alignment and Clustering Strategies

Author

Listed:
  • Shaun Mahony
  • Philip E Auron
  • Panayiotis V Benos

Abstract

Transcription factor (TF) proteins recognize a small number of DNA sequences with high specificity and control the expression of neighbouring genes. The evolution of TF binding preference has been the subject of a number of recent studies, in which generalized binding profiles have been introduced and used to improve the prediction of new target sites. Generalized profiles are generated by aligning and merging the individual profiles of related TFs. However, the distance metrics and alignment algorithms used to compare the binding profiles have not yet been fully explored or optimized. As a result, binding profiles depend on TF structural information and sometimes may ignore important distinctions between subfamilies. Prediction of the identity or the structural class of a protein that binds to a given DNA pattern will enhance the analysis of microarray and ChIP–chip data where frequently multiple putative targets of usually unknown TFs are predicted. Various comparison metrics and alignment algorithms are evaluated (a total of 105 combinations). We find that local alignments are generally better than global alignments at detecting eukaryotic DNA motif similarities, especially when combined with the sum of squared distances or Pearson's correlation coefficient comparison metrics. In addition, multiple-alignment strategies for binding profiles and tree-building methods are tested for their efficiency in constructing generalized binding models. A new method for automatic determination of the optimal number of clusters is developed and applied in the construction of a new set of familial binding profiles which improves upon TF classification accuracy. A software tool, STAMP, is developed to host all tested methods and make them publicly available. This work provides a high quality reference set of familial binding profiles and the first comprehensive platform for analysis of DNA profiles. Detecting similarities between DNA motifs is a key step in the comparative study of transcriptional regulation, and the work presented here will form the basis for tool and method development for future transcriptional modeling studies.: Transcription factors are primary regulators of gene expression. They usually recognize short DNA sequences in gene promoters and subsequently alter their transcription rate. It is known that structurally related transcription factors often recognize similar DNA-binding patterns (or motifs). Comparison of these motifs not only provides insights into the evolutionary process they undergo, but it also has many important practical applications. For example, motifs that are found to be “similar” can be combined to form generalized profiles, which can be used to improve our ability to predict novel DNA signals in the promoters of co-expressed genes, and thus facilitate a more accurate mapping of gene-regulatory networks. However, to date there is no comprehensive platform that will allow for an efficient analysis of DNA motifs. Furthermore, the efficiency of the methods used to assign similarity between DNA motifs has not been thoroughly tested. This paper takes an important first step towards this goal by evaluating available comparison strategies as applied to DNA motifs and by generating an improved familial profile dataset.

Suggested Citation

  • Shaun Mahony & Philip E Auron & Panayiotis V Benos, 2007. "DNA Familial Binding Profiles Made Easy: Comparison of Various Motif Alignment and Clustering Strategies," PLOS Computational Biology, Public Library of Science, vol. 3(3), pages 1-14, March.
  • Handle: RePEc:plo:pcbi00:0030061
    DOI: 10.1371/journal.pcbi.0030061
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030061
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0030061&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0030061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew K Miller & Cristin G Print & Poul M F Nielsen & Edmund J Crampin, 2010. "A Bayesian Search for Transcriptional Motifs," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-7, November.
    2. David L Corcoran & Kusum V Pandit & Ben Gordon & Arindam Bhattacharjee & Naftali Kaminski & Panayiotis V Benos, 2009. "Features of Mammalian microRNA Promoters Emerge from Polymerase II Chromatin Immunoprecipitation Data," PLOS ONE, Public Library of Science, vol. 4(4), pages 1-10, April.
    3. Shaoqiang Zhang & Yong Chen, 2016. "CLIMP: Clustering Motifs via Maximal Cliques with Parallel Computing Design," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-17, August.
    4. Adrian Schröder & Johannes Eichner & Jochen Supper & Jonas Eichner & Dierk Wanke & Carsten Henneges & Andreas Zell, 2010. "Predicting DNA-Binding Specificities of Eukaryotic Transcription Factors," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thiemo Fetzer & Samuel Marden, 2017. "Take What You Can: Property Rights, Contestability and Conflict," Economic Journal, Royal Economic Society, vol. 0(601), pages 757-783, May.
    2. Daniel Agness & Travis Baseler & Sylvain Chassang & Pascaline Dupas & Erik Snowberg, 2022. "Valuing the Time of the Self-Employed," CESifo Working Paper Series 9567, CESifo.
    3. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    4. Nicoleta Serban & Huijing Jiang, 2012. "Multilevel Functional Clustering Analysis," Biometrics, The International Biometric Society, vol. 68(3), pages 805-814, September.
    5. Orietta Nicolis & Jean Paul Maidana & Fabian Contreras & Danilo Leal, 2024. "Analyzing the Impact of COVID-19 on Economic Sustainability: A Clustering Approach," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
    6. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    7. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    8. Forzani, Liliana & Gieco, Antonella & Tolmasky, Carlos, 2017. "Likelihood ratio test for partial sphericity in high and ultra-high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 18-38.
    9. Yujia Li & Xiangrui Zeng & Chien‐Wei Lin & George C. Tseng, 2022. "Simultaneous estimation of cluster number and feature sparsity in high‐dimensional cluster analysis," Biometrics, The International Biometric Society, vol. 78(2), pages 574-585, June.
    10. Vojtech Blazek & Michal Petruzela & Tomas Vantuch & Zdenek Slanina & Stanislav Mišák & Wojciech Walendziuk, 2020. "The Estimation of the Influence of Household Appliances on the Power Quality in a Microgrid System," Energies, MDPI, vol. 13(17), pages 1-21, August.
    11. Andrew Clark & Alexander Mihailov & Michael Zargham, 2024. "Complex Systems Modeling of Community Inclusion Currencies," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1259-1294, August.
    12. Nicoleta Serban, 2008. "Estimating and clustering curves in the presence of heteroscedastic errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 553-571.
    13. Caruso, Germán & Scartascini, Carlos & Tommasi, Mariano, 2015. "Are we all playing the same game? The economic effects of constitutions depend on the degree of institutionalization," European Journal of Political Economy, Elsevier, vol. 38(C), pages 212-228.
    14. Alessandro Crimi & Olivier Commowick & Adil Maarouf & Jean-Christophe Ferré & Elise Bannier & Ayman Tourbah & Isabelle Berry & Jean-Philippe Ranjeva & Gilles Edan & Christian Barillot, 2014. "Predictive Value of Imaging Markers at Multiple Sclerosis Disease Onset Based on Gadolinium- and USPIO-Enhanced MRI and Machine Learning," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    15. Mehmet Çağlar & Cem Gürler, 2022. "Sustainable Development Goals: A cluster analysis of worldwide countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8593-8624, June.
    16. Elizabeth Tipton & Robert B. Olsen, "undated". "Enhancing the Generalizability of Impact Studies in Education," Mathematica Policy Research Reports 35d5625333dc480aba9765b3b, Mathematica Policy Research.
    17. Cyril Atkinson-Clement & Eléonore Pigalle, 2021. "What can we learn from Covid-19 pandemic’s impact on human behaviour? The case of France’s lockdown," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-12, December.
    18. Jelle R Dalenberg & Luca Nanetti & Remco J Renken & René A de Wijk & Gert J ter Horst, 2014. "Dealing with Consumer Differences in Liking during Repeated Exposure to Food; Typical Dynamics in Rating Behavior," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    19. Daniel Lewis & Davide Melcangi & Laura Pilossoph, 2019. "Latent Heterogeneity in the Marginal Propensity to Consume," 2019 Meeting Papers 519, Society for Economic Dynamics.
    20. Chun-Xia Zhang & Jiang-She Zhang & Sang-Woon Kim, 2016. "PBoostGA: pseudo-boosting genetic algorithm for variable ranking and selection," Computational Statistics, Springer, vol. 31(4), pages 1237-1262, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0030061. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.