IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0030118.html
   My bibliography  Save this article

Not All Scale-Free Networks Are Born Equal: The Role of the Seed Graph in PPI Network Evolution

Author

Listed:
  • Fereydoun Hormozdiari
  • Petra Berenbrink
  • Nataša Pržulj
  • S Cenk Sahinalp

Abstract

The (asymptotic) degree distributions of the best-known “scale-free” network models are all similar and are independent of the seed graph used; hence, it has been tempting to assume that networks generated by these models are generally similar. In this paper, we observe that several key topological features of such networks depend heavily on the specific model and the seed graph used. Furthermore, we show that starting with the “right” seed graph (typically a dense subgraph of the protein–protein interaction network analyzed), the duplication model captures many topological features of publicly available protein–protein interaction networks very well.: The interactions among proteins in an organism can be represented as a protein–protein interaction (PPI) network, where each protein is represented with a node, and each interaction is represented with an edge between two nodes. As PPI networks of several model organisms become available, their topological features attract considerable attention. It is believed that the available PPI networks are (1) “small-world” networks, and (2) their degree distribution is in the form of a “power law.” In other words, (1) it is possible to reach from a protein to any other protein in only a small (approximately six) number of hops, and (2) although most proteins have only a few interactions (one or two), there are a few proteins with many more interactions (200 or more) and that act as “hubs.” It has thus been tempting to develop simple mathematical network generators with topological features similar to those of the available PPI networks. One such model, the “duplication model,” is based on Ohno's model of genome growth. It starts with a small “seed network” and grows by “duplicating” one of the existing nodes at a time, with an identical set of interactions; a randomly selected subset of these interactions is then deleted, and a few new interactions are added at random. It has been mathematically proven that the duplication model provides a small-world network and also has a power-law degree distribution. What we show in this paper is that by choosing the “right” seed network, many other topological features of the available PPI networks can be captured by the duplication model. The right seed network in this case turns out to include two sizable “cliques” (subnetworks where all node pairs are connected) with many interactions in between. In this paper, we also consider the preferential attachment model, which again grows by adding to a seed network one node at a time and connecting the new node to every other node with probability proportional to the existing degree of the second node. Because the preferential attachment model also provides a small-world network and has a power-law degree distribution, it has been considered equivalent to the duplication model. We show that the two models are vastly different in terms of other topological features we consider, and the preferential attachment model cannot capture some key features of the available PPI networks.

Suggested Citation

  • Fereydoun Hormozdiari & Petra Berenbrink & Nataša Pržulj & S Cenk Sahinalp, 2007. "Not All Scale-Free Networks Are Born Equal: The Role of the Seed Graph in PPI Network Evolution," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-12, July.
  • Handle: RePEc:plo:pcbi00:0030118
    DOI: 10.1371/journal.pcbi.0030118
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030118
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0030118&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0030118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. Jeong & S. P. Mason & A.-L. Barabási & Z. N. Oltvai, 2001. "Lethality and centrality in protein networks," Nature, Nature, vol. 411(6833), pages 41-42, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgio Jansen & Tanda Qi & Vito Latora & Grigoris D. Amoutzias & Daniela Delneri & Stephen G. Oliver & Giuseppe Nicosia, 2024. "Minimisation of metabolic networks defines a new functional class of genes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Yubo Peng & Bofeng Zhang & Furong Chang, 2021. "Overlapping Community Detection of Bipartite Networks Based on a Novel Community Density," Future Internet, MDPI, vol. 13(4), pages 1-21, March.
    4. Fiedor, Paweł, 2014. "Sector strength and efficiency on developed and emerging financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 180-188.
    5. Wilhelm, Thomas & Hollunder, Jens, 2007. "Information theoretic description of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 385-396.
    6. Mahyar, Hamidreza & Hasheminezhad, Rouzbeh & Ghalebi K., Elahe & Nazemian, Ali & Grosu, Radu & Movaghar, Ali & Rabiee, Hamid R., 2018. "Compressive sensing of high betweenness centrality nodes in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 166-184.
    7. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    8. Gao, Jianbo & Hu, Jing, 2014. "Financial crisis, Omori's law, and negative entropy flow," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 79-86.
    9. Hua Yu & Jianxin Chen & Xue Xu & Yan Li & Huihui Zhao & Yupeng Fang & Xiuxiu Li & Wei Zhou & Wei Wang & Yonghua Wang, 2012. "A Systematic Prediction of Multiple Drug-Target Interactions from Chemical, Genomic, and Pharmacological Data," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-14, May.
    10. Tom C Freeman & Leon Goldovsky & Markus Brosch & Stijn van Dongen & Pierre Mazière & Russell J Grocock & Shiri Freilich & Janet Thornton & Anton J Enright, 2007. "Construction, Visualisation, and Clustering of Transcription Networks from Microarray Expression Data," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-11, October.
    11. Won Jun Lee & Sang Cheol Kim & Jung-Ho Yoon & Sang Jun Yoon & Johan Lim & You-Sun Kim & Sung Won Kwon & Jeong Hill Park, 2016. "Meta-Analysis of Tumor Stem-Like Breast Cancer Cells Using Gene Set and Network Analysis," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-20, February.
    12. Chung-Yen Yu & Yung-Ting Chuang & Hsi-Peng Kuan, 2017. "Understanding Faculty Collaboration and Productivity: A Case Study," Asian Social Science, Canadian Center of Science and Education, vol. 13(3), pages 1-1, March.
    13. Christos Ellinas & Neil Allan & Anders Johansson, 2016. "Exploring Structural Patterns Across Evolved and Designed Systems: A Network Perspective," Systems Engineering, John Wiley & Sons, vol. 19(3), pages 179-192, May.
    14. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    15. Gitanjali Yadav & Suresh Babu, 2012. "NEXCADE: Perturbation Analysis for Complex Networks," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-11, August.
    16. Gong, Pulin & van Leeuwen, Cees, 2003. "Emergence of scale-free network with chaotic units," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 679-688.
    17. Ruskin, Heather J. & Burns, John, 2006. "Weighted networks in immune system shape space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 549-555.
    18. Xionglei He & Jianzhi Zhang, 2006. "Why Do Hubs Tend to Be Essential in Protein Networks?," PLOS Genetics, Public Library of Science, vol. 2(6), pages 1-9, June.
    19. Jordán, Ferenc, 2022. "The network perspective: Vertical connections linking organizational levels," Ecological Modelling, Elsevier, vol. 473(C).
    20. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0030118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.