IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/0030093.html
   My bibliography  Save this article

The Human Genomic Melting Map

Author

Listed:
  • Fang Liu
  • Eivind Tøstesen
  • Jostein K Sundet
  • Tor-Kristian Jenssen
  • Christoph Bock
  • Geir Ivar Jerstad
  • William G Thilly
  • Eivind Hovig

Abstract

In a living cell, the antiparallel double-stranded helix of DNA is a dynamically changing structure. The structure relates to interactions between and within the DNA strands, and the array of other macromolecules that constitutes functional chromatin. It is only through its changing conformations that DNA can organize and structure a large number of cellular functions. In particular, DNA must locally uncoil, or melt, and become single-stranded for DNA replication, repair, recombination, and transcription to occur. It has previously been shown that this melting occurs cooperatively, whereby several base pairs act in concert to generate melting bubbles, and in this way constitute a domain that behaves as a unit with respect to local DNA single-strandedness. We have applied a melting map calculation to the complete human genome, which provides information about the propensities of forming local bubbles determined from the whole sequence, and present a first report on its basic features, the extent of cooperativity, and correlations to various physical and biological features of the human genome. Globally, the melting map covaries very strongly with GC content. Most importantly, however, cooperativity of DNA denaturation causes this correlation to be weaker at resolutions fewer than 500 bps. This is also the resolution level at which most structural and biological processes occur, signifying the importance of the informational content inherent in the genomic melting map. The human DNA melting map may be further explored at http://meltmap.uio.no.: In a living cell, DNA both is an information carrier and carries out important structural tasks, such as organizing its replication and distributing the chromosomes to the daughter cells. DNA is frequently depicted as an antiparallel double-stranded helix, but DNA may rather be viewed as having a dynamically changing structure. This is because in performing most of these tasks, it is necessary for the DNA helix to become single-stranded locally, or unwound, thereby creating “bubbles” in the double strand, much as what happens when a twisted rope with two strands is untwisted. In the cell, this happens by the aid of the enzymatic machinery, but it may also be observed in experiments when a gradual increase in temperature produces bubbles. Our calculations in producing a melting map are based on temperature changes, but may be viewed as a map of bubble formation tendencies along the genome. In DNA, an opening bubble does not open one base at a time, but rather as a cooperative event, in that several base pairs act in concert to form a bubble, and we use an algorithm that takes this aspect into consideration. We then explore the correlations between the melting map and many known features of the human genome. We also demonstrate the extent of cooperativity, and find that the melting map carries information otherwise not available. Once the melting map is calculated, a number of more detailed studies of relationships to DNA structure and function are made possible, as well as improvements of algorithms for modelling DNA with associated proteins as they occur in the natural cellular environment.

Suggested Citation

  • Fang Liu & Eivind Tøstesen & Jostein K Sundet & Tor-Kristian Jenssen & Christoph Bock & Geir Ivar Jerstad & William G Thilly & Eivind Hovig, 2007. "The Human Genomic Melting Map," PLOS Computational Biology, Public Library of Science, vol. 3(5), pages 1-13, May.
  • Handle: RePEc:plo:pcbi00:0030093
    DOI: 10.1371/journal.pcbi.0030093
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030093
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0030093&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.0030093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christoph Bock & Martina Paulsen & Sascha Tierling & Thomas Mikeska & Thomas Lengauer & Jörn Walter, 2006. "CpG Island Methylation in Human Lymphocytes Is Highly Correlated with DNA Sequence, Repeats, and Predicted DNA Structure," PLOS Genetics, Public Library of Science, vol. 2(3), pages 1-10, March.
    2. Eran Segal & Yvonne Fondufe-Mittendorf & Lingyi Chen & AnnChristine Thåström & Yair Field & Irene K. Moore & Ji-Ping Z. Wang & Jonathan Widom, 2006. "A genomic code for nucleosome positioning," Nature, Nature, vol. 442(7104), pages 772-778, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji-Ping Wang & Yvonne Fondufe-Mittendorf & Liqun Xi & Guei-Feng Tsai & Eran Segal & Jonathan Widom, 2008. "Preferentially Quantized Linker DNA Lengths in Saccharomyces cerevisiae," PLOS Computational Biology, Public Library of Science, vol. 4(9), pages 1-10, September.
    2. Zing Tsung-Yeh Tsai & Shin-Han Shiu & Huai-Kuang Tsai, 2015. "Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-22, August.
    3. Segal Mark R, 2008. "Re-Cracking the Nucleosome Positioning Code," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-24, April.
    4. Moser Carlee & Gupta Mayetri, 2012. "A Generalized Hidden Markov Model for Determining Sequence-based Predictors of Nucleosome Positioning," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-23, January.
    5. Monica Naughtin & Zofia Haftek-Terreau & Johan Xavier & Sam Meyer & Maud Silvain & Yan Jaszczyszyn & Nicolas Levy & Vincent Miele & Mohamed Salah Benleulmi & Marc Ruff & Vincent Parissi & Cédric Vaill, 2015. "DNA Physical Properties and Nucleosome Positions Are Major Determinants of HIV-1 Integrase Selectivity," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-28, June.
    6. Anthony Mathelier & Wyeth W Wasserman, 2013. "The Next Generation of Transcription Factor Binding Site Prediction," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-18, September.
    7. Wolfram Möbius & Ulrich Gerland, 2010. "Quantitative Test of the Barrier Nucleosome Model for Statistical Positioning of Nucleosomes Up- and Downstream of Transcription Start Sites," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-11, August.
    8. Guo-Cheng Yuan & Jun S Liu, 2008. "Genomic Sequence Is Highly Predictive of Local Nucleosome Depletion," PLOS Computational Biology, Public Library of Science, vol. 4(1), pages 1-11, January.
    9. Leelavati Narlikar & Raluca Gordân & Alexander J Hartemink, 2007. "A Nucleosome-Guided Map of Transcription Factor Binding Sites in Yeast," PLOS Computational Biology, Public Library of Science, vol. 3(11), pages 1-10, November.
    10. Matti Annala & Kirsti Laurila & Harri Lähdesmäki & Matti Nykter, 2011. "A Linear Model for Transcription Factor Binding Affinity Prediction in Protein Binding Microarrays," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-13, May.
    11. Wei Chen & Hao Lin & Peng-Mian Feng & Chen Ding & Yong-Chun Zuo & Kuo-Chen Chou, 2012. "iNuc-PhysChem: A Sequence-Based Predictor for Identifying Nucleosomes via Physicochemical Properties," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-9, October.
    12. Joke J F A van Vugt & Martijn de Jager & Magdalena Murawska & Alexander Brehm & John van Noort & Colin Logie, 2009. "Multiple Aspects of ATP-Dependent Nucleosome Translocation by RSC and Mi-2 Are Directed by the Underlying DNA Sequence," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-14, July.
    13. Harsh Nagpal & Ahmad Ali-Ahmad & Yasuhiro Hirano & Wei Cai & Mario Halic & Tatsuo Fukagawa & Nikolina Sekulić & Beat Fierz, 2023. "CENP-A and CENP-B collaborate to create an open centromeric chromatin state," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Johanna Klughammer & Daria Romanovskaia & Amelie Nemc & Annika Posautz & Charlotte A. Seid & Linda C. Schuster & Melissa C. Keinath & Juan Sebastian Lugo Ramos & Lindsay Kosack & Ann Evankow & Dieter , 2023. "Comparative analysis of genome-scale, base-resolution DNA methylation profiles across 580 animal species," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    15. Kroll, K.M. & Ferrantini, A. & Domany, E., 2010. "Introduction to biology and chromosomal instabilities in cancer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(20), pages 4374-4388.
    16. Xianfu Yi & Yu-Dong Cai & Zhisong He & WeiRen Cui & Xiangyin Kong, 2010. "Prediction of Nucleosome Positioning Based on Transcription Factor Binding Sites," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-7, September.
    17. Behrouz Eslami-Mossallam & Raoul D Schram & Marco Tompitak & John van Noort & Helmut Schiessel, 2016. "Multiplexing Genetic and Nucleosome Positioning Codes: A Computational Approach," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-14, June.
    18. Alexander W. Blocker & Edoardo M. Airoldi, 2016. "Template-Based Models for Genome-Wide Analysis of Next-Generation Sequencing Data at Base-Pair Resolution," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 967-987, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:0030093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.