IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/2004750.html
   My bibliography  Save this article

Questioning the evidence for BCI-based communication in the complete locked-in state

Author

Listed:
  • Martin Spüler

Abstract

No abstract is available for this item.

Suggested Citation

  • Martin Spüler, 2019. "Questioning the evidence for BCI-based communication in the complete locked-in state," PLOS Biology, Public Library of Science, vol. 17(4), pages 1-5, April.
  • Handle: RePEc:plo:pbio00:2004750
    DOI: 10.1371/journal.pbio.2004750
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2004750
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.2004750&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.2004750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. N. Birbaumer & N. Ghanayim & T. Hinterberger & I. Iversen & B. Kotchoubey & A. Kübler & J. Perelmouter & E. Taub & H. Flor, 1999. "A spelling device for the paralysed," Nature, Nature, vol. 398(6725), pages 297-298, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reinhold Scherer, 2019. "Thought-based interaction: Same data, same methods, different results?," PLOS Biology, Public Library of Science, vol. 17(4), pages 1-7, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrey Eliseyev & Tetiana Aksenova, 2016. "Penalized Multi-Way Partial Least Squares for Smooth Trajectory Decoding from Electrocorticographic (ECoG) Recording," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    2. Ujwal Chaudhary & Bin Xia & Stefano Silvoni & Leonardo G Cohen & Niels Birbaumer, 2017. "Brain–Computer Interface–Based Communication in the Completely Locked-In State," PLOS Biology, Public Library of Science, vol. 15(1), pages 1-25, January.
    3. Yasuhiko Nakanishi & Takufumi Yanagisawa & Duk Shin & Ryohei Fukuma & Chao Chen & Hiroyuki Kambara & Natsue Yoshimura & Masayuki Hirata & Toshiki Yoshimine & Yasuharu Koike, 2013. "Prediction of Three-Dimensional Arm Trajectories Based on ECoG Signals Recorded from Human Sensorimotor Cortex," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-9, August.
    4. Florin Popescu & Siamac Fazli & Yakob Badower & Benjamin Blankertz & Klaus-R Müller, 2007. "Single Trial Classification of Motor Imagination Using 6 Dry EEG Electrodes," PLOS ONE, Public Library of Science, vol. 2(7), pages 1-5, July.
    5. Peter Loos & René Riedl & Gernot Müller-Putz & Jan Brocke & Fred Davis & Rajiv Banker & Pierre-Majorique Léger, 2010. "NeuroIS: Neuroscientific Approaches in the Investigation and Development of Information Systems," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(6), pages 395-401, December.
    6. Heung-Il Suk & Siamac Fazli & Jan Mehnert & Klaus-Robert Müller & Seong-Whan Lee, 2014. "Predicting BCI Subject Performance Using Probabilistic Spatio-Temporal Filters," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-15, February.
    7. Pavlov, A.N. & Grishina, D.S. & Runnova, A.E. & Maksimenko, V.A. & Pavlova, O.N. & Shchukovsky, N.V. & Hramov, A.E. & Kurths, J., 2019. "Recognition of electroencephalographic patterns related to human movements or mental intentions with multiresolution analysis," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 230-235.
    8. Laura Acqualagna & Loic Botrel & Carmen Vidaurre & Andrea Kübler & Benjamin Blankertz, 2016. "Large-Scale Assessment of a Fully Automatic Co-Adaptive Motor Imagery-Based Brain Computer Interface," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-19, February.
    9. Iñaki Iturrate & Jonathan Grizou & Jason Omedes & Pierre-Yves Oudeyer & Manuel Lopes & Luis Montesano, 2015. "Exploiting Task Constraints for Self-Calibrated Brain-Machine Interface Control Using Error-Related Potentials," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-15, July.
    10. Pieter-Jan Kindermans & Martijn Schreuder & Benjamin Schrauwen & Klaus-Robert Müller & Michael Tangermann, 2014. "True Zero-Training Brain-Computer Interfacing – An Online Study," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-13, July.
    11. Johannes Höhne & Elisa Holz & Pit Staiger-Sälzer & Klaus-Robert Müller & Andrea Kübler & Michael Tangermann, 2014. "Motor Imagery for Severely Motor-Impaired Patients: Evidence for Brain-Computer Interfacing as Superior Control Solution," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:2004750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.