IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/2003787.html
   My bibliography  Save this article

The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users

Author

Listed:
  • Serafeim Perdikis
  • Luca Tonin
  • Sareh Saeedi
  • Christoph Schneider
  • José del R Millán

Abstract

This work aims at corroborating the importance and efficacy of mutual learning in motor imagery (MI) brain–computer interface (BCI) by leveraging the insights obtained through our participation in the BCI race of the Cybathlon event. We hypothesized that, contrary to the popular trend of focusing mostly on the machine learning aspects of MI BCI training, a comprehensive mutual learning methodology that reinstates the three learning pillars (at the machine, subject, and application level) as equally significant could lead to a BCI–user symbiotic system able to succeed in real-world scenarios such as the Cybathlon event. Two severely impaired participants with chronic spinal cord injury (SCI), were trained following our mutual learning approach to control their avatar in a virtual BCI race game. The competition outcomes substantiate the effectiveness of this type of training. Most importantly, the present study is one among very few to provide multifaceted evidence on the efficacy of subject learning during BCI training. Learning correlates could be derived at all levels of the interface—application, BCI output, and electroencephalography (EEG) neuroimaging—with two end-users, sufficiently longitudinal evaluation, and, importantly, under real-world and even adverse conditions.Author summary: Noninvasive brain–computer interface (BCI) based on imagined movements can restore functions lost to disability by enabling spontaneous, direct brain control of external devices without risks associated with surgical implantation of neural interfaces. We hypothesized that, contrary to the popular trend of focusing on the machine learning aspects of BCI training, a comprehensive mutual learning methodology could strongly promote users’ acquisition of BCI skills and lead to a system able to succeed in real-world scenarios such as the Cybathlon event, the first international competition for disabled pilots in control of assistive technology. Two severely impaired participants with chronic spinal cord injury (SCI) were trained following our mutual learning approach to control their avatar in a virtual BCI race game. The evolution of the training process, including competition outcomes (gold medal, tournament record), substantiates the effectiveness of this type of training. Most importantly, the present study provides multifaceted evidence on the efficacy of subject learning during BCI training. Learning correlates could be derived at all levels of the interface—application, BCI output, and electroencephalography—with two end-users, longitudinal evaluation, and, importantly, under real-world and even adverse conditions.

Suggested Citation

  • Serafeim Perdikis & Luca Tonin & Sareh Saeedi & Christoph Schneider & José del R Millán, 2018. "The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users," PLOS Biology, Public Library of Science, vol. 16(5), pages 1-28, May.
  • Handle: RePEc:plo:pbio00:2003787
    DOI: 10.1371/journal.pbio.2003787
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2003787
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.2003787&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.2003787?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. N. Birbaumer & N. Ghanayim & T. Hinterberger & I. Iversen & B. Kotchoubey & A. Kübler & J. Perelmouter & E. Taub & H. Flor, 1999. "A spelling device for the paralysed," Nature, Nature, vol. 398(6725), pages 297-298, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrey Eliseyev & Tetiana Aksenova, 2016. "Penalized Multi-Way Partial Least Squares for Smooth Trajectory Decoding from Electrocorticographic (ECoG) Recording," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    2. Ujwal Chaudhary & Bin Xia & Stefano Silvoni & Leonardo G Cohen & Niels Birbaumer, 2017. "Brain–Computer Interface–Based Communication in the Completely Locked-In State," PLOS Biology, Public Library of Science, vol. 15(1), pages 1-25, January.
    3. Yasuhiko Nakanishi & Takufumi Yanagisawa & Duk Shin & Ryohei Fukuma & Chao Chen & Hiroyuki Kambara & Natsue Yoshimura & Masayuki Hirata & Toshiki Yoshimine & Yasuharu Koike, 2013. "Prediction of Three-Dimensional Arm Trajectories Based on ECoG Signals Recorded from Human Sensorimotor Cortex," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-9, August.
    4. Florin Popescu & Siamac Fazli & Yakob Badower & Benjamin Blankertz & Klaus-R Müller, 2007. "Single Trial Classification of Motor Imagination Using 6 Dry EEG Electrodes," PLOS ONE, Public Library of Science, vol. 2(7), pages 1-5, July.
    5. Peter Loos & René Riedl & Gernot Müller-Putz & Jan Brocke & Fred Davis & Rajiv Banker & Pierre-Majorique Léger, 2010. "NeuroIS: Neuroscientific Approaches in the Investigation and Development of Information Systems," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(6), pages 395-401, December.
    6. Martin Spüler, 2019. "Questioning the evidence for BCI-based communication in the complete locked-in state," PLOS Biology, Public Library of Science, vol. 17(4), pages 1-5, April.
    7. Heung-Il Suk & Siamac Fazli & Jan Mehnert & Klaus-Robert Müller & Seong-Whan Lee, 2014. "Predicting BCI Subject Performance Using Probabilistic Spatio-Temporal Filters," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-15, February.
    8. Pavlov, A.N. & Grishina, D.S. & Runnova, A.E. & Maksimenko, V.A. & Pavlova, O.N. & Shchukovsky, N.V. & Hramov, A.E. & Kurths, J., 2019. "Recognition of electroencephalographic patterns related to human movements or mental intentions with multiresolution analysis," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 230-235.
    9. Laura Acqualagna & Loic Botrel & Carmen Vidaurre & Andrea Kübler & Benjamin Blankertz, 2016. "Large-Scale Assessment of a Fully Automatic Co-Adaptive Motor Imagery-Based Brain Computer Interface," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-19, February.
    10. Iñaki Iturrate & Jonathan Grizou & Jason Omedes & Pierre-Yves Oudeyer & Manuel Lopes & Luis Montesano, 2015. "Exploiting Task Constraints for Self-Calibrated Brain-Machine Interface Control Using Error-Related Potentials," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-15, July.
    11. Pieter-Jan Kindermans & Martijn Schreuder & Benjamin Schrauwen & Klaus-Robert Müller & Michael Tangermann, 2014. "True Zero-Training Brain-Computer Interfacing – An Online Study," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-13, July.
    12. Johannes Höhne & Elisa Holz & Pit Staiger-Sälzer & Klaus-Robert Müller & Andrea Kübler & Michael Tangermann, 2014. "Motor Imagery for Severely Motor-Impaired Patients: Evidence for Brain-Computer Interfacing as Superior Control Solution," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:2003787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.