Author
Listed:
- Lisa Genzel
- Janine I Rossato
- Justin Jacobse
- Roddy M Grieves
- Patrick A Spooner
- Francesco P Battaglia
- Guillen Fernández
- Richard G M Morris
Abstract
While hippocampal and cortical mechanisms of memory consolidation have long been studied, their interaction is poorly understood. We sought to investigate potential interactions with respect to trace dominance, strengthening, and interference associated with postencoding novelty or sleep. A learning procedure was scheduled in a watermaze that placed the impact of novelty and sleep in opposition. Distinct behavioural manipulations—context preexposure or interference during memory retrieval—differentially affected trace dominance and trace survival, respectively. Analysis of immediate early gene expression revealed parallel up-regulation in the hippocampus and cortex, sustained in the hippocampus in association with novelty but in the cortex in association with sleep. These findings shed light on dynamically interacting mechanisms mediating the stabilization of hippocampal and neocortical memory traces. Hippocampal memory traces followed by novelty were more dominant by default but liable to interference, whereas sleep engaged a lasting stabilization of cortical traces and consequent trace dominance after preexposure.Author Summary: Memories are initially stored in a hippocampal–cortical network; however, which brain area is important for long-term storage depends on what happens after learning. For example, replay of recent memories during sleep is thought to lead to consolidation in the cortex. In contrast, postlearning novelty is thought to strengthen hippocampal memory traces via a mechanism that depends on dopamine.
Suggested Citation
Lisa Genzel & Janine I Rossato & Justin Jacobse & Roddy M Grieves & Patrick A Spooner & Francesco P Battaglia & Guillen Fernández & Richard G M Morris, 2017.
"The Yin and Yang of Memory Consolidation: Hippocampal and Neocortical,"
PLOS Biology, Public Library of Science, vol. 15(1), pages 1-26, January.
Handle:
RePEc:plo:pbio00:2000531
DOI: 10.1371/journal.pbio.2000531
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:2000531. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.