IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v406y2000i6797d10.1038_35021052.html
   My bibliography  Save this article

Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval

Author

Listed:
  • Karim Nader

    (W. M. Keck Foundation Laboratory of Neurobiology, Center for Neural Science, New York University)

  • Glenn E. Schafe

    (W. M. Keck Foundation Laboratory of Neurobiology, Center for Neural Science, New York University)

  • Joseph E. Le Doux

    (W. M. Keck Foundation Laboratory of Neurobiology, Center for Neural Science, New York University)

Abstract

‘New’ memories are initially labile and sensitive to disruption before being consolidated into stable long-term memories1,2,3,4,5. Much evidence indicates that this consolidation involves the synthesis of new proteins in neurons6,7,8,9. The lateral and basal nuclei of the amygdala (LBA) are believed to be a site of memory storage in fear learning10. Infusion of the protein synthesis inhibitor anisomycin into the LBA shortly after training prevents consolidation of fear memories11. Here we show that consolidated fear memories, when reactivated during retrieval, return to a labile state in which infusion of anisomycin shortly after memory reactivation produces amnesia on later tests, regardless of whether reactivation was performed 1 or 14 days after conditioning. The same treatment with anisomycin, in the absence of memory reactivation, left memory intact. Consistent with a time-limited role for protein synthesis production in consolidation, delay of the infusion until six hours after memory reactivation produced no amnesia. Our data show that consolidated fear memories, when reactivated, return to a labile state that requires de novo protein synthesis for reconsolidation. These findings are not predicted by traditional theories of memory consolidation.

Suggested Citation

  • Karim Nader & Glenn E. Schafe & Joseph E. Le Doux, 2000. "Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval," Nature, Nature, vol. 406(6797), pages 722-726, August.
  • Handle: RePEc:nat:nature:v:406:y:2000:i:6797:d:10.1038_35021052
    DOI: 10.1038/35021052
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35021052
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35021052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cecilia Forcato & Rodrigo S Fernandez & María E Pedreira, 2013. "The Role and Dynamic of Strengthening in the Reconsolidation Process in a Human Declarative Memory: What Decides the Fate of Recent and Older Memories?," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-12, April.
    2. Ella Gabitov & Arnaud Boutin & Basile Pinsard & Nitzan Censor & Stuart M Fogel & Geneviève Albouy & Bradley R King & Julie Carrier & Leonardo G Cohen & Avi Karni & Julien Doyon, 2019. "Susceptibility of consolidated procedural memory to interference is independent of its active task-based retrieval," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-19, January.
    3. Dimitri Nowicki & Hava Siegelmann, 2010. "Flexible Kernel Memory," PLOS ONE, Public Library of Science, vol. 5(6), pages 1-18, June.
    4. Laura Arnemann & Kai A Konrad & Niklas Potrafke, 2021. "Collective memories on the 2010 European debt crisis," European Union Politics, , vol. 22(4), pages 762-784, December.
    5. Yoav Kessler & Susan Vandermorris & Nigel Gopie & Alexander Daros & Gordon Winocur & Morris Moscovitch, 2014. "Divided Attention Improves Delayed, but Not Immediate Retrieval of a Consolidated Memory," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-6, March.
    6. Cecilia Forcato & Luz Bavassi & Gabriela De Pino & Rodrigo Sebastián Fernández & Mirta Fabiana Villarreal & María Eugenia Pedreira, 2016. "Differential Left Hippocampal Activation during Retrieval with Different Types of Reminders: An fMRI Study of the Reconsolidation Process," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-14, March.
    7. Cecilia Forcato & María L C Rodríguez & María E Pedreira, 2011. "Repeated Labilization-Reconsolidation Processes Strengthen Declarative Memory in Humans," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-14, August.
    8. Megan E. Speer & Sandra Ibrahim & Daniela Schiller & Mauricio R. Delgado, 2021. "Finding positive meaning in memories of negative events adaptively updates memory," Nature Communications, Nature, vol. 12(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:406:y:2000:i:6797:d:10.1038_35021052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.