IDEAS home Printed from https://ideas.repec.org/a/pes/ieroec/v11y2020i2p325-346.html
   My bibliography  Save this article

The use of neural networks to determine value based drivers for SMEs operating in the rural areas of the Czech Republic

Author

Listed:
  • Jaromir Vrbka

    (School of Expertness and Valuation, Czech Republic)

Abstract

Research background: In the past, the main objective of a company was to generate sufficient profit. Nowadays, a company must seek to achieve much broader objectives. To be successful in this pursuit, it must not only measure financial performance, but also monitor internal and external developments, increase shareholders’ wealth and protect the interests of other stakeholders, i.e. to analyze and act on those factors that affect company value. Purpose of the article: The objective of the contribution is to determine through the use of artificial neural networks the relationship between business value drivers, or value based drivers (VBD), and EVA Equity, which is economic value added (EVA), of small and medium-sized enterprises operating in the rural areas of the Czech Republic. Methods: The data was obtained from the Bisnode´s Albertina database. The data set consists of the profit and loss accounts for 2013 to 2017 of small and medium-sized enterprises operating in rural areas of the Czech Republic. Two scenarios are analyzed. In the first, the independent variables are only the value drivers, whereas in the second, company location (region) is included. The objective is to find the dependence of EVA Equity on individual VBD and company location. A sensitivity analysis is conducted, on the basis of which the importance of individual value drivers and company location is determined. Findings & Value added: The output is a set of value drivers, which could be used by company managers to regulate the growth of EVA Equity, i.e. value for shareholders. The findings reveal that the difference between successful and unsuccessful companies is determined by the level of involvement of human capital; companies use a large number of substitutes for factors of production, whereby the involvement of borrowed capital is likely to cause a positive financial leverage effect.

Suggested Citation

  • Jaromir Vrbka, 2020. "The use of neural networks to determine value based drivers for SMEs operating in the rural areas of the Czech Republic," Oeconomia Copernicana, Institute of Economic Research, vol. 11(2), pages 325-346, June.
  • Handle: RePEc:pes:ieroec:v:11:y:2020:i:2:p:325-346
    DOI: 10.24136/oc.2020.014
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.24136/oc.2020.014
    Download Restriction: no

    File URL: https://libkey.io/10.24136/oc.2020.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jakub Horak & Petr Suler & Jaroslav Kollmann & Jan Marecek, 2020. "Credit Absorption Capacity of Businesses in the Construction Sector of the Czech Republic—Analysis Based on the Difference in Values of EVA Entity and EVA Equity," Sustainability, MDPI, vol. 12(21), pages 1-16, October.
    2. Veronika Jezkova & Zuzana Rowland & Veronika Machova & Jan Hejda, 2020. "The Intrinsic Value of an Enterprise Determined by Means of the FCFE Tool," Sustainability, MDPI, vol. 12(21), pages 1-13, October.
    3. Jakub Horak & Tomas Krulicky & Zuzana Rowland & Veronika Machova, 2020. "Creating a Comprehensive Method for the Evaluation of a Company," Sustainability, MDPI, vol. 12(21), pages 1-23, November.
    4. Mahdis sadat Jalaee & Alireza Shakibaei & Amin GhasemiNejad & Sayyed Abdolmajid Jalaee & Reza Derakhshani, 2021. "A Novel Computational Intelligence Approach for Coal Consumption Forecasting in Iran," Sustainability, MDPI, vol. 13(14), pages 1-16, July.

    More about this item

    Keywords

    business value drivers; value based drivers; small and medium-sized enterprises; rural area; ultimate goal; economic value added; neural networks;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pes:ieroec:v:11:y:2020:i:2:p:325-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam P. Balcerzak (email available below). General contact details of provider: https://edirc.repec.org/data/ibgtopl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.