IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v7y2020i1d10.1057_s41599-020-00578-9.html
   My bibliography  Save this article

The impact of online review helpfulness and word of mouth communication on box office performance predictions

Author

Listed:
  • Sangjae Lee

    (Sejong University)

  • Joon Yeon Choeh

    (Sejong University)

Abstract

While electronic word-of-mouth (eWOM) variables, such as volume and valence have been posited in previous studies to consistently affect product sales, there is a lack of studies on the different contexts and outcomes that affect the importance of eWOM variables. In order to fill this gap, this study attempts to use the helpfulness of reviews and reviewers as moderators to predict box office revenue, comparing the prediction performances of business intelligence (BI) methods (random forest, decision trees using boosting, the k-nearest neighbor method, discriminant analysis) using eWOM between high and low review or reviewer helpfulness subsample in the Korean movie market scrawled from the Naver Movies website. The results of applying machine learning methods show that movies with more helpful reviews or those that are reviewed by more helpful reviewers show greater prediction performance, and review and reviewer helpfulness improve the prediction power of eWOM for box office revenue. The prediction performance will improve if the characteristics of eWOM are likely to be combined to contribute to box office revenue to a greater extent.

Suggested Citation

  • Sangjae Lee & Joon Yeon Choeh, 2020. "The impact of online review helpfulness and word of mouth communication on box office performance predictions," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-12, December.
  • Handle: RePEc:pal:palcom:v:7:y:2020:i:1:d:10.1057_s41599-020-00578-9
    DOI: 10.1057/s41599-020-00578-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-020-00578-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-020-00578-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Papathanassis, Alexis & Knolle, Friederike, 2011. "Exploring the adoption and processing of online holiday reviews: A grounded theory approach," Tourism Management, Elsevier, vol. 32(2), pages 215-224.
    2. Kim, Taegu & Hong, Jungsik & Kang, Pilsung, 2015. "Box office forecasting using machine learning algorithms based on SNS data," International Journal of Forecasting, Elsevier, vol. 31(2), pages 364-390.
    3. Duan, Wenjing & Gu, Bin & Whinston, Andrew B., 2008. "The dynamics of online word-of-mouth and product sales—An empirical investigation of the movie industry," Journal of Retailing, Elsevier, vol. 84(2), pages 233-242.
    4. Caroline Elliott & Rob Simmons, 2008. "Determinants of UK Box Office Success: The Impact of Quality Signals," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 33(2), pages 93-111, September.
    5. Jordi Mckenzie, 2008. "Bayesian Information Transmission and Stable Distributions: Motion Picture Revenues at the Australian Box Office," The Economic Record, The Economic Society of Australia, vol. 84(266), pages 338-353, September.
    6. Pradeep K. Chintagunta & Shyam Gopinath & Sriram Venkataraman, 2010. "The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets," Marketing Science, INFORMS, vol. 29(5), pages 944-957, 09-10.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sangjae Lee & Joon Yeon Choeh, 2020. "Movie Production Efficiency Moderating between Online Word-of-Mouth and Subsequent Box Office Revenue," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    2. Sangjae Lee & Joon Yeon Choeh, 2020. "Using the Social Influence of Electronic Word-of-Mouth for Predicting Product Sales: The Moderating Effect of Review or Reviewer Helpfulness and Product Type," Sustainability, MDPI, vol. 12(19), pages 1-18, September.
    3. Chou, Yuntsai & Lin, Wei, 2024. "Blockbuster or Flop? Effects of Social Media on the Chinese Film Market," 24th ITS Biennial Conference, Seoul 2024. New bottles for new wine: digital transformation demands new policies and strategies 302460, International Telecommunications Society (ITS).
    4. Daekook Kang, 2021. "Box-office forecasting in Korea using search trend data: a modified generalized Bass diffusion model," Electronic Commerce Research, Springer, vol. 21(1), pages 41-72, March.
    5. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    6. Tingting Song & Jinghua Huang & Yong Tan & Yifan Yu, 2019. "Using User- and Marketer-Generated Content for Box Office Revenue Prediction: Differences Between Microblogging and Third-Party Platforms," Service Science, INFORMS, vol. 30(1), pages 191-203, March.
    7. Kaushik, Kapil & Mishra, Rajhans & Rana, Nripendra P. & Dwivedi, Yogesh K., 2018. "Exploring reviews and review sequences on e-commerce platform: A study of helpful reviews on Amazon.in," Journal of Retailing and Consumer Services, Elsevier, vol. 45(C), pages 21-32.
    8. Li, Yimeng & Xiong, Yu & Mariuzzo, Franco & Xia, Senmao, 2021. "The underexplored impacts of online consumer reviews: Pricing and new product design strategies in the O2O supply chain," International Journal of Production Economics, Elsevier, vol. 237(C).
    9. Qihua Liu & Xiaoyu Zhang & Liyi Zhang & Yang Zhao, 2019. "The interaction effects of information cascades, word of mouth and recommendation systems on online reading behavior: an empirical investigation," Electronic Commerce Research, Springer, vol. 19(3), pages 521-547, September.
    10. Wang, Feng & Liu, Xuefeng & Fang, Eric (Er), 2015. "User Reviews Variance, Critic Reviews Variance, and Product Sales: An Exploration of Customer Breadth and Depth Effects," Journal of Retailing, Elsevier, vol. 91(3), pages 372-389.
    11. Oberoi, Poonam & Patel, Chirag & Haon, Christophe, 2017. "Technology sourcing for website personalization and social media marketing: A study of e-retailing industry," Journal of Business Research, Elsevier, vol. 80(C), pages 10-23.
    12. Natalia Gmerek, 2015. "The determinants of Polish movies’ box office performance in Poland," Journal of Marketing and Consumer Behaviour in Emerging Markets, University of Warsaw, Faculty of Management, vol. 1(1), pages 15-35.
    13. Thaís L. D. Souza & Marislei Nishijima & Ana C. P. Fava, 2019. "Do consumer and expert reviews affect the length of time a film is kept on screens in the USA?," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 43(1), pages 145-171, March.
    14. Ronny Behrens & Natasha Zhang Foutz & Michael Franklin & Jannis Funk & Fernanda Gutierrez-Navratil & Julian Hofmann & Ulrike Leibfried, 2021. "Leveraging analytics to produce compelling and profitable film content," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 45(2), pages 171-211, June.
    15. Kang, Lili & Peng, Fei & Anwar, Sajid, 2022. "All that glitters is not gold: Do movie quality and contents influence box-office revenues in China?," Journal of Policy Modeling, Elsevier, vol. 44(2), pages 492-510.
    16. Steven F. Lehrer & Tian Xie, 2022. "The Bigger Picture: Combining Econometrics with Analytics Improves Forecasts of Movie Success," Management Science, INFORMS, vol. 68(1), pages 189-210, January.
    17. Cheng Zhao & Chong Alex Wang, 2023. "A cross-site comparison of online review manipulation using Benford’s law," Electronic Commerce Research, Springer, vol. 23(1), pages 365-406, March.
    18. Kim, Taegu & Hong, Jungsik & Kang, Pilsung, 2015. "Box office forecasting using machine learning algorithms based on SNS data," International Journal of Forecasting, Elsevier, vol. 31(2), pages 364-390.
    19. Xie, Guangming & Lü, Kevin & Gupta, Suraksha & Jiang, Yushi & Shi, Li, 2021. "How Dispersive Opinions Affect Consumer Decisions: Endowment Effect Guides Attributional Inferences," Journal of Retailing, Elsevier, vol. 97(4), pages 621-638.
    20. Marchand, André & Hennig-Thurau, Thorsten & Wiertz, Caroline, 2017. "Not all digital word of mouth is created equal: Understanding the respective impact of consumer reviews and microblogs on new product success," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 336-354.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:7:y:2020:i:1:d:10.1057_s41599-020-00578-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.