IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v5y2019i1d10.1057_s41599-019-0311-0.html
   My bibliography  Save this article

Quantification of textual comprehension difficulty with an information theory-based algorithm

Author

Listed:
  • Louise Bogéa Ribeiro

    (Federal University of Pará
    Federal University of Pará)

  • Anderson Raiol Rodrigues

    (Federal University of Pará
    Federal University of Pará)

  • Kauê Machado Costa

    (National Institutes of Health)

  • Manoel da Silva Filho

    (Federal University of Pará)

Abstract

Textual comprehension is often not adequately acquired despite intense didactic efforts. Textual comprehension quality is mostly evaluated using subjective criteria. Starting from the assumption that word usage statistics may be used to infer the probability of successful semantic representations, we hypothesized that textual comprehension depended on words with high occurrence probability (high degree of familiarity), which is typically inversely proportional to their information entropy. We tested this hypothesis by quantifying word occurrences in a bank of words from Portuguese language academic theses and using information theory tools to infer degrees of textual familiarity. We found that the lower and upper bounds of the database were delimited by low-entropy words with the highest probabilities of causing incomprehension (i.e., nouns and adjectives) or facilitating semantic decoding (i.e., prepositions and conjunctions). We developed an openly available software suite called CalcuLetra for implementing these algorithms and tested it on publicly available denotative text samples (e.g., articles, essays, and abstracts). We propose that the quantitative model presented here may apply to other languages and could be a tool for supporting automated textual comprehension evaluations, and potentially assisting the development of teaching materials or the diagnosis of learning disorders.

Suggested Citation

  • Louise Bogéa Ribeiro & Anderson Raiol Rodrigues & Kauê Machado Costa & Manoel da Silva Filho, 2019. "Quantification of textual comprehension difficulty with an information theory-based algorithm," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-9, December.
  • Handle: RePEc:pal:palcom:v:5:y:2019:i:1:d:10.1057_s41599-019-0311-0
    DOI: 10.1057/s41599-019-0311-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-019-0311-0
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-019-0311-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marcelo A. Montemurro & Damián H. Zanette, 2002. "Entropic Analysis Of The Role Of Words In Literary Texts," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 7-17.
    2. Marcelo A Montemurro & Damián H Zanette, 2011. "Universal Entropy of Word Ordering Across Linguistic Families," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehri, Ali & Jamaati, Maryam, 2021. "Statistical metrics for languages classification: A case study of the Bible translations," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Heng Chen & Haitao Liu, 2018. "Quantifying Evolution of Short and Long-Range Correlations in Chinese Narrative Texts across 2000 Years," Complexity, Hindawi, vol. 2018, pages 1-12, February.
    3. Antiqueira, L. & Nunes, M.G.V. & Oliveira Jr., O.N. & F. Costa, L. da, 2007. "Strong correlations between text quality and complex networks features," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 811-820.
    4. Jingxian Liao & Guowei Yang & David Kavaler & Vladimir Filkov & Prem Devanbu, 2019. "Status, identity, and language: A study of issue discussions in GitHub," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-20, June.
    5. Rosso, Osvaldo A. & Craig, Hugh & Moscato, Pablo, 2009. "Shakespeare and other English Renaissance authors as characterized by Information Theory complexity quantifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 916-926.
    6. Ke, Xiaohua & Zeng, Yongqiang & Ma, Qinghua & Zhu, Lin, 2014. "Complex dynamics of text analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 307-314.
    7. Carlos F Alvarez & Luis E Palafox & Leocundo Aguilar & Mauricio A Sanchez & Luis G Martinez, 2016. "Using Link Disconnection Entropy Disorder to Detect Fast Moving Nodes in MANETs," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-15, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:5:y:2019:i:1:d:10.1057_s41599-019-0311-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.