IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v11y2024i1d10.1057_s41599-024-03530-3.html
   My bibliography  Save this article

The delayed and combinatorial response of online public opinion to the real world: An inquiry into news texts during the COVID-19 era

Author

Listed:
  • Yamin Du

    (Huainan Normal University)

  • Huanhuan Cheng

    (Huainan Normal University)

  • Qing Liu

    (Huainan Normal University)

  • Song Tan

    (Huainan Normal University)

Abstract

In sociological research based on online public opinion, scholars often overlook the delay and combinatory nature of online responses to real-world events. This study aims to explore the delayed and combinatory responses of online public opinion to the intensity of the COVID-19 pandemic. Specifically, we seek to answer the following questions: (a) Is there a temporal delay in the response of online public opinion to the intensity of the pandemic? (b) Does this delay exhibit general characteristics of social networks, such as combinatory effects and higher-order interactions? To address these questions, we employ natural language processing techniques to extract online public opinion data and utilize statistical and machine learning-based causal inference methods for analysis. The findings indicate that online public opinion’s response to the intensity of COVID-19 is not immediate but rather exhibits a long-term lag. Identical COVID-19 intensity data can trigger multiple delayed public opinion responses, while a single delayed public opinion datum may be influenced by multiple preceding COVID-19 intensity data points. This delayed response of online public opinion and its higher-order network characteristics result in a waveform structure of real-world impacts influenced by online public opinion. We also utilized machine learning causal inference techniques to investigate the sensitivity differences in online public opinion responses to COVID-19 during various time periods.

Suggested Citation

  • Yamin Du & Huanhuan Cheng & Qing Liu & Song Tan, 2024. "The delayed and combinatorial response of online public opinion to the real world: An inquiry into news texts during the COVID-19 era," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-18, December.
  • Handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03530-3
    DOI: 10.1057/s41599-024-03530-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-024-03530-3
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-024-03530-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanjiv R. Das & Mike Y. Chen, 2007. "Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web," Management Science, INFORMS, vol. 53(9), pages 1375-1388, September.
    2. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    3. Drews, Stefan & Savin, Ivan & van den Bergh, Jeroen C.J.M. & Villamayor-Tomás, Sergio, 2022. "Climate concern and policy acceptance before and after COVID-19," Ecological Economics, Elsevier, vol. 199(C).
    4. Qingyuan Zhao & Trevor Hastie, 2021. "Causal Interpretations of Black-Box Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 272-281, January.
    5. Wen-zhong Shi & Fanxin Zeng & Anshu Zhang & Chengzhuo Tong & Xiaoqi Shen & Zhewei Liu & Zhicheng Shi, 2022. "Online public opinion during the first epidemic wave of COVID-19 in China based on Weibo data," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riccardo Di Francesco, 2022. "Aggregation Trees," CEIS Research Paper 546, Tor Vergata University, CEIS, revised 20 Nov 2023.
    2. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    3. William Arbour, 2021. "Can Recidivism be Prevented from Behind Bars? Evidence from a Behavioral Program," Working Papers tecipa-683, University of Toronto, Department of Economics.
    4. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.
    6. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    7. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Papapostolou, Nikos C. & Pouliasis, Panos K. & Nomikos, Nikos K. & Kyriakou, Ioannis, 2016. "Shipping investor sentiment and international stock return predictability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 81-94.
    9. Shonosuke Sugasawa & Hisashi Noma, 2021. "Efficient screening of predictive biomarkers for individual treatment selection," Biometrics, The International Biometric Society, vol. 77(1), pages 249-257, March.
    10. Tsukioka, Yasutomo & Yanagi, Junya & Takada, Teruko, 2018. "Investor sentiment extracted from internet stock message boards and IPO puzzles," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 205-217.
    11. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    12. Stephen Jarvis & Olivier Deschenes & Akshaya Jha, 2022. "The Private and External Costs of Germany’s Nuclear Phase-Out," Journal of the European Economic Association, European Economic Association, vol. 20(3), pages 1311-1346.
    13. Jiao Ji & Oleksandr Talavera & Shuxing Yin, 2018. "The Hidden Information Content: Evidence from the Tone of Independent Director Reports," Working Papers 2018-28, Swansea University, School of Management.
    14. Arne Henningsen & Guy Low & David Wuepper & Tobias Dalhaus & Hugo Storm & Dagim Belay & Stefan Hirsch, 2024. "Estimating Causal Effects with Observational Data: Guidelines for Agricultural and Applied Economists," IFRO Working Paper 2024/03, University of Copenhagen, Department of Food and Resource Economics.
    15. Hayakawa, Kazunobu & Keola, Souknilanh & Silaphet, Korrakoun & Yamanouchi, Kenta, 2022. "Estimating the impacts of international bridges on foreign firm locations: a machine learning approach," IDE Discussion Papers 847, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    16. Christopher N. Avery & Judith A. Chevalier & Richard J. Zeckhauser, 2016. "The "CAPS" Prediction System and Stock Market Returns," Review of Finance, European Finance Association, vol. 20(4), pages 1363-1381.
    17. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    18. Naguib, Costanza, 2019. "Estimating the Heterogeneous Impact of the Free Movement of Persons on Relative Wage Mobility," Economics Working Paper Series 1903, University of St. Gallen, School of Economics and Political Science.
    19. Labro, Eva & Lang, Mark & Omartian, James D., 2023. "Predictive analytics and centralization of authority," Journal of Accounting and Economics, Elsevier, vol. 75(1).
    20. Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03530-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.