IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v26y2017i5d10.1007_s10726-017-9528-8.html
   My bibliography  Save this article

Strategy, Complexity and Cooperation: The Sino-American Climate Regime

Author

Listed:
  • Sean B. Walker

    (University of South Alabama)

  • Keith W. Hipel

    (University of Waterloo
    Centre for International Governance Innovation
    Balsillie School of International Affairs)

Abstract

The Graph Model for Conflict Resolution is applied to a potential climate negotiation between the United States of America (USA) and the People’s Republic of China (PRC) in order to gain strategic insights into how a successful agreement to reduce greenhouse gas emissions could be reached. In light of the failure of many nations to meet their expected Kyoto Protocol emission reduction targets and the lack of involvement of the world’s greatest emitters of airborne pollutants, the USA and PRC, there is a need to determine successful strategies for combating climate change. The issues surrounding the potential implementation of a bilateral agreement between the USA and PRC are systematically analyzed. Information gathered about the decision makers, options and preferences within the potential negotiations is utilized to create a valid conflict model which is used as a basis for carrying out strategic analyses. Moreover, a novel method is implemented within the Graph Model for Conflict Resolution to gain insights into the impact of attitudes on these negotiations. The strategic findings reflect reasonably well what actually occurred in November 2014 when the USA and PRC negotiated a bilateral deal.

Suggested Citation

  • Sean B. Walker & Keith W. Hipel, 2017. "Strategy, Complexity and Cooperation: The Sino-American Climate Regime," Group Decision and Negotiation, Springer, vol. 26(5), pages 997-1027, September.
  • Handle: RePEc:spr:grdene:v:26:y:2017:i:5:d:10.1007_s10726-017-9528-8
    DOI: 10.1007/s10726-017-9528-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-017-9528-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-017-9528-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. DeCanio, Stephen J. & Fremstad, Anders, 2013. "Game theory and climate diplomacy," Ecological Economics, Elsevier, vol. 85(C), pages 177-187.
    2. Weber, Christopher L. & Peters, Glen P. & Guan, Dabo & Hubacek, Klaus, 2008. "The contribution of Chinese exports to climate change," Energy Policy, Elsevier, vol. 36(9), pages 3572-3577, September.
    3. Dana R. Fisher & Jessica F. Green, 2004. "Understanding Disenfranchisement: Civil Society and Developing Countries' Influence and Participation in Global Governance for Sustainable Development," Global Environmental Politics, MIT Press, vol. 4(3), pages 65-84, August.
    4. Amer Obeidi & Keith W. Hipel & D. Marc Kilgour, 2005. "The Role of Emotions in Envisioning Outcomes in Conflict Analysis," Group Decision and Negotiation, Springer, vol. 14(6), pages 481-500, November.
    5. Kaveh Madani & Keith Hipel, 2011. "Non-Cooperative Stability Definitions for Strategic Analysis of Generic Water Resources Conflicts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 1949-1977, June.
    6. Luai Hamouda & D. Marc Kilgour & Keith W. Hipel, 2004. "Strength of Preference in the Graph Model for Conflict Resolution," Group Decision and Negotiation, Springer, vol. 13(5), pages 449-462, September.
    7. He, Shawei & Marc Kilgour, D. & Hipel, Keith W., 2017. "A general hierarchical graph model for conflict resolution with application to greenhouse gas emission disputes between USA and China," European Journal of Operational Research, Elsevier, vol. 257(3), pages 919-932.
    8. Bernard, A. & Haurie, A. & Vielle, M. & Viguier, L., 2008. "A two-level dynamic game of carbon emission trading between Russia, China, and Annex B countries," Journal of Economic Dynamics and Control, Elsevier, vol. 32(6), pages 1830-1856, June.
    9. Warwick J. McKibbin & Martin T. Ross & Robert Shackleton & Peter J. Wilcoxen, 1999. "Emissions Trading, Capital Flows and the Kyoto Protocol," The Energy Journal, , vol. 20(1_suppl), pages 287-333, June.
    10. D. Marc Kilgour & Keith W. Hipel & Liping Fang & Xiaoyong (John) Peng, 2001. "Coalition Analysis in Group Decision Support," Group Decision and Negotiation, Springer, vol. 10(2), pages 159-175, March.
    11. Michael C. Shupe & William M. Wright & Keith W. Hipel & Niall M. Fraser, 1980. "Nationalization of the Suez Canal," Journal of Conflict Resolution, Peace Science Society (International), vol. 24(3), pages 477-493, September.
    12. Pittel, Karen & Rübbelke, Dirk T.G., 2008. "Climate policy and ancillary benefits: A survey and integration into the modelling of international negotiations on climate change," Ecological Economics, Elsevier, vol. 68(1-2), pages 210-220, December.
    13. Frances C. Moore & Delavane B. Diaz, 2015. "Temperature impacts on economic growth warrant stringent mitigation policy," Nature Climate Change, Nature, vol. 5(2), pages 127-131, February.
    14. Frances C. Moore & Delavane B. Diaz, 2015. "Erratum: Temperature impacts on economic growth warrant stringent mitigation policy," Nature Climate Change, Nature, vol. 5(3), pages 280-280, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabino, Emerson Rodrigues & Rêgo, Leandro Chaves, 2023. "Optimism pessimism stability in the graph model for conflict resolution for multilateral conflicts," European Journal of Operational Research, Elsevier, vol. 309(2), pages 671-682.
    2. Dingxuan Huang & Claudio O. Delang & Yongjiao Wu & Shuliang Li, 2021. "An Improved Lotka–Volterra Model Using Quantum Game Theory," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
    3. Mengjie Yang & Kai Yang & Yue Che & Shiqiang Lu & Fengyun Sun & Ying Chen & Mengting Li, 2021. "Resolving Transboundary Water Conflicts: Dynamic Evolutionary Analysis Using an Improved GMCR Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3321-3338, August.
    4. Shawei He, 2019. "Coalition Analysis in Basic Hierarchical Graph Model for Conflict Resolution with Application to Climate Change Governance Disputes," Group Decision and Negotiation, Springer, vol. 28(5), pages 879-906, October.
    5. Castelló-Sirvent, Fernando & García-García, Juan Manuel, 2022. "Exploring the language heterogeneity strategies of European think tanks," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    6. Berge, Erling, 2023. "How can “tragedies of the commons” be resolved? Social dilemmas and legislation," CLTS Working Papers 1/23, Norwegian University of Life Sciences, Centre for Land Tenure Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keith W. Hipel & Liping Fang & D. Marc Kilgour, 2020. "The Graph Model for Conflict Resolution: Reflections on Three Decades of Development," Group Decision and Negotiation, Springer, vol. 29(1), pages 11-60, February.
    2. Tiruwork B. Tibebu & Eric Hittinger & Qing Miao & Eric Williams, 2024. "Adoption Model Choice Affects the Optimal Subsidy for Residential Solar," Energies, MDPI, vol. 17(3), pages 1-19, February.
    3. Hongbo Duan & Gupeng Zhang & Shouyang Wang & Ying Fan, 2018. "Balancing China’s climate damage risk against emission control costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 387-403, March.
    4. Luca Gerotto & Paolo Pellizzari, 2021. "A replication of Pindyck’s willingness to pay: on the efforts required to obtain results," SN Business & Economics, Springer, vol. 1(5), pages 1-25, May.
    5. Fremstad, Anders & Paul, Mark, 2022. "Neoliberalism and climate change: How the free-market myth has prevented climate action," Ecological Economics, Elsevier, vol. 197(C).
    6. Rongrong Xu & Yongxiang Wu & Ming Chen & Xuan Zhang & Wei Wu & Long Tan & Gaoxu Wang & Yi Xu & Bing Yan & Yuedong Xia, 2019. "Calculation of the contribution rate of China’s hydraulic science and technology based on a feedforward neural network," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-22, September.
    7. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    8. Tobias Kranz & Hamza Bennani & Matthias Neuenkirch, 2024. "Monetary Policy and Climate Change: Challenges and the Role of Major Central Banks," Research Papers in Economics 2024-01, University of Trier, Department of Economics.
    9. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    10. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    11. Alfredo R.M. Rosete & Hendrik Van den Berg, 2019. "Macroeconomic Policy in an Environmentally-Constrained Economy: A Dialectical Materialist Application of the Harrod Growth Model," Review of Radical Political Economics, Union for Radical Political Economics, vol. 51(4), pages 544-552, December.
    12. Baarsch, Florent & Granadillos, Jessie R. & Hare, William & Knaus, Maria & Krapp, Mario & Schaeffer, Michiel & Lotze-Campen, Hermann, 2020. "The impact of climate change on incomes and convergence in Africa," World Development, Elsevier, vol. 126(C).
    13. Adam Michael Bauer & Cristian Proistosescu & Gernot Wagner, 2023. "Carbon Dioxide as a Risky Asset," CESifo Working Paper Series 10278, CESifo.
    14. Wu, Bingqing & Sarker, Bhaba R. & Paudel, Krishna P., 2015. "Sustainable energy from biomass: Biomethane manufacturing plant location and distribution problem," Applied Energy, Elsevier, vol. 158(C), pages 597-608.
    15. Koiry, Subrata & Huang, Wei, 2023. "Do ecological protection approaches affect total factor productivity change of cropland production in Sweden?," Ecological Economics, Elsevier, vol. 209(C).
    16. Ganesh, Ibram, 2016. "Electrochemical conversion of carbon dioxide into renewable fuel chemicals – The role of nanomaterials and the commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1269-1297.
    17. Matthew Agarwala & Josh Martin, 2022. "Environmentally-adjusted productivity measures for the UK," Working Papers 028, The Productivity Institute.
    18. Wu, Zhiyang & Zhou, Tao & Zhang, Ning & Choi, Yongrok & Kong, Fanbin, 2023. "A hidden risk in climate change: The effect of daily rainfall shocks on industrial activities," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 161-180.
    19. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    20. Levent Aydın, 2018. "The possible macroeconomic and sectoral impacts of carbon taxation on Turkey’s economy: A computable general equilibrium analyses," Energy & Environment, , vol. 29(5), pages 784-801, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:26:y:2017:i:5:d:10.1007_s10726-017-9528-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.