IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v62y2011i9d10.1057_jors.2010.136.html
   My bibliography  Save this article

A discrete competitive facility location model with variable attractiveness

Author

Listed:
  • H Küçükaydın

    (Boğaziçi University)

  • N Aras

    (Boğaziçi University)

  • İ K Altınel

    (Boğaziçi University)

Abstract

We consider the discrete version of the competitive facility location problem in which new facilities have to be located by a new market entrant firm to compete against already existing facilities that may belong to one or more competitors. The demand is assumed to be aggregated at certain points in the plane and the new facilities can be located at predetermined candidate sites. We employ Huff's gravity-based rule in modelling the behaviour of the customers where the probability that customers at a demand point patronize a certain facility is proportional to the facility attractiveness and inversely proportional to the distance between the facility site and demand point. The objective of the firm is to determine the locations of the new facilities and their attractiveness levels so as to maximize the profit, which is calculated as the revenue from the customers less the fixed cost of opening the facilities and variable cost of setting their attractiveness levels. We formulate a mixed-integer nonlinear programming model for this problem and propose three methods for its solution: a Lagrangean heuristic, a branch-and-bound method with Lagrangean relaxation, and another branch-and-bound method with nonlinear programming relaxation. Computational results obtained on a set of randomly generated instances show that the last method outperforms the others in terms of accuracy and efficiency and can provide an optimal solution in a reasonable amount of time.

Suggested Citation

  • H Küçükaydın & N Aras & İ K Altınel, 2011. "A discrete competitive facility location model with variable attractiveness," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1726-1741, September.
  • Handle: RePEc:pal:jorsoc:v:62:y:2011:i:9:d:10.1057_jors.2010.136
    DOI: 10.1057/jors.2010.136
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2010.136
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2010.136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David L. Huff, 1966. "A Programmed Solution for Approximating an Optimum Retail Location," Land Economics, University of Wisconsin Press, vol. 42(3), pages 293-303.
    2. José Fernández & Blas Pelegrín & Frank Plastria & Boglárka Tóth, 2007. "Planar Location and Design of a New Facility with Inner and Outer Competition: An Interval Lexicographical-like Solution Procedure," Networks and Spatial Economics, Springer, vol. 7(1), pages 19-44, March.
    3. Drezner, Tammy & Drezner, Zvi & Salhi, Said, 2002. "Solving the multiple competitive facilities location problem," European Journal of Operational Research, Elsevier, vol. 142(1), pages 138-151, October.
    4. Tammy Drezner & Zvi Drezner, 1997. "Replacing continuous demand with discrete demand in a competitive location model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 81-95, February.
    5. Tammy Drezner & Zvi Drezner, 2004. "Finding the optimal solution to the Huff based competitive location model," Computational Management Science, Springer, vol. 1(2), pages 193-208, July.
    6. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2007. "Competitive facility location model with concave demand," European Journal of Operational Research, Elsevier, vol. 181(2), pages 598-619, September.
    7. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2007. "Competitive facility location and design problem," European Journal of Operational Research, Elsevier, vol. 182(1), pages 40-62, October.
    8. Oded Berman & Dmitry Krass, 2002. "Locating Multiple Competitive Facilities: Spatial Interaction Models with Variable Expenditures," Annals of Operations Research, Springer, vol. 111(1), pages 197-225, March.
    9. Beasley, J. E., 1993. "Lagrangean heuristics for location problems," European Journal of Operational Research, Elsevier, vol. 65(3), pages 383-399, March.
    10. Benati, Stefano & Hansen, Pierre, 2002. "The maximum capture problem with random utilities: Problem formulation and algorithms," European Journal of Operational Research, Elsevier, vol. 143(3), pages 518-530, December.
    11. T Drezner & Z Drezner, 2008. "Lost demand in a competitive environment," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 362-371, March.
    12. Tammy Drezner & Zvi Drezner, 2002. "Validating the Gravity-Based Competitive Location Model Using Inferred Attractiveness," Annals of Operations Research, Springer, vol. 111(1), pages 227-237, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Drezner, Zvi & Eiselt, H.A., 2024. "Competitive location models: A review," European Journal of Operational Research, Elsevier, vol. 316(1), pages 5-18.
    2. Diego Ruiz-Hernández & Javier Elizalde & David Delgado-Gómez, 2017. "Cournot–Stackelberg games in competitive delocation," Annals of Operations Research, Springer, vol. 256(1), pages 149-170, September.
    3. Chi Chiang & Tsui-Yii Shih, 2015. "Establishment Decision of Experience Stores: Insights into Marketing Effect," Journal of Social Science Studies, Macrothink Institute, vol. 2(1), pages 165-185, January.
    4. Lin, Yunhui & Wang, Yuan & Lee, Loo Hay & Chew, Ek Peng, 2022. "Profit-maximizing parcel locker location problem under threshold Luce model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    5. Lin, Yun Hui & Wang, Yuan & Lee, Loo Hay & Chew, Ek Peng, 2022. "Omnichannel facility location and fulfillment optimization," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 187-209.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
    2. Drezner, Zvi & Eiselt, H.A., 2024. "Competitive location models: A review," European Journal of Operational Research, Elsevier, vol. 316(1), pages 5-18.
    3. Tammy Drezner & Zvi Drezner & Atsuo Suzuki, 2019. "A cover based competitive facility location model with continuous demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 565-581, October.
    4. Rezapour, Shabnam & Farahani, Reza Zanjirani & Dullaert, Wout & De Borger, Bruno, 2014. "Designing a new supply chain for competition against an existing supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 124-140.
    5. S Rezapour & R Zanjirani Farahani & T Drezner, 2011. "Strategic design of competing supply chain networks for inelastic demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1784-1795, October.
    6. Zvi Drezner & Dawit Zerom, 2024. "A refinement of the gravity model for competitive facility location," Computational Management Science, Springer, vol. 21(1), pages 1-18, June.
    7. Farahani, Reza Zanjirani & Rezapour, Shabnam & Drezner, Tammy & Fallah, Samira, 2014. "Competitive supply chain network design: An overview of classifications, models, solution techniques and applications," Omega, Elsevier, vol. 45(C), pages 92-118.
    8. Haase, Knut & Hoppe, Mirko, 2008. "Standortplanung unter Wettbewerb - Teil 1: Grundlagen," Discussion Papers 2/2008, Technische Universität Dresden, "Friedrich List" Faculty of Transport and Traffic Sciences, Institute of Transport and Economics.
    9. Zvi Drezner & Dawit Zerom, 2023. "Competitive facility location under attrition," Computational Management Science, Springer, vol. 20(1), pages 1-19, December.
    10. Gohram Baloch & Fatma Gzara, 2020. "Strategic Network Design for Parcel Delivery with Drones Under Competition," Transportation Science, INFORMS, vol. 54(1), pages 204-228, January.
    11. T Drezner & Z Drezner & P Kalczynski, 2011. "A cover-based competitive location model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 100-113, January.
    12. Lin, Yun Hui & Tian, Qingyun, 2021. "Branch-and-cut approach based on generalized benders decomposition for facility location with limited choice rule," European Journal of Operational Research, Elsevier, vol. 293(1), pages 109-119.
    13. Blas Pelegrín & Pascual Fernández & María Dolores García Pérez, 2016. "Profit maximization and reduction of the cannibalization effect in chain expansion," Annals of Operations Research, Springer, vol. 246(1), pages 57-75, November.
    14. T Drezner & Z Drezner, 2008. "Lost demand in a competitive environment," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 362-371, March.
    15. Burcin Bozkaya & Seda Yanik & Selim Balcisoy, 2010. "A GIS-Based Optimization Framework for Competitive Multi-Facility Location-Routing Problem," Networks and Spatial Economics, Springer, vol. 10(3), pages 297-320, September.
    16. Blanquero, Rafael & Carrizosa, Emilio & G.-Tóth, Boglárka & Nogales-Gómez, Amaya, 2016. "p-facility Huff location problem on networks," European Journal of Operational Research, Elsevier, vol. 255(1), pages 34-42.
    17. Lin, Yun Hui & Wang, Yuan & Lee, Loo Hay & Chew, Ek Peng, 2022. "Omnichannel facility location and fulfillment optimization," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 187-209.
    18. Christian Burkart & Pamela C. Nolz & Walter J. Gutjahr, 2017. "Modelling beneficiaries’ choice in disaster relief logistics," Annals of Operations Research, Springer, vol. 256(1), pages 41-61, September.
    19. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2021. "Optimizing facility location and design," European Journal of Operational Research, Elsevier, vol. 289(1), pages 31-43.
    20. Kung, Ling-Chieh & Liao, Wei-Hung, 2018. "An approximation algorithm for a competitive facility location problem with network effects," European Journal of Operational Research, Elsevier, vol. 267(1), pages 176-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:62:y:2011:i:9:d:10.1057_jors.2010.136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.