IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v62y2011i7d10.1057_jors.2010.64.html
   My bibliography  Save this article

Construction and validation of distribution-based regression simulation metamodels

Author

Listed:
  • M I Reis dos Santos

    (Technical University of Lisbon (IST))

  • P M Reis dos Santos

    (Technical University of Lisbon (IST))

Abstract

Metamodels are used as analysis tools for solving optimization problems. A metamodel is a simplification of the simulation model, representing the system's input–output relationship through a mathematical function with customized parameters. The proposed approach uses confidence intervals as an acceptance procedure, and as a predictive validation procedure when new points are employed. To improve the knowledge about the system, the response is depicted by modelling both the mean and variance functions of a normal distribution along the experimental region. Such metamodels are specially useful when the variance of the output varies significantly. These metamodels may be used for minimizing product quality loss and improving production robustness. The development of such metamodels is illustrated with two examples.

Suggested Citation

  • M I Reis dos Santos & P M Reis dos Santos, 2011. "Construction and validation of distribution-based regression simulation metamodels," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1376-1384, July.
  • Handle: RePEc:pal:jorsoc:v:62:y:2011:i:7:d:10.1057_jors.2010.64
    DOI: 10.1057/jors.2010.64
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/jors.2010.64
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/jors.2010.64?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W C M van Beers & J P C Kleijnen, 2003. "Kriging for interpolation in random simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(3), pages 255-262, March.
    2. Kleijnen, Jack P. C. & Sargent, Robert G., 2000. "A methodology for fitting and validating metamodels in simulation," European Journal of Operational Research, Elsevier, vol. 120(1), pages 14-29, January.
    3. J P C Kleijnen & W C M van Beers, 2004. "Application-driven sequential designs for simulation experiments: Kriging metamodelling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(8), pages 876-883, August.
    4. J P C Kleijnen & M T Smits, 2003. "Performance metrics in supply chain management," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(5), pages 507-514, May.
    5. Kleijnen, J.P.C., 1981. "Regression analysis for simulation practitioners," Research Memorandum FEW 85, Tilburg University, School of Economics and Management.
    6. V C Ivănescu & J W M Bertrand & J C Fransoo & J P C Kleijnen, 2006. "Bootstrapping to solve the limited data problem in production control: an application in batch process industries," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 2-9, January.
    7. E G A Gaury & J P C Kleijnen & H Pierreval, 2001. "A methodology to customize pull control systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(7), pages 789-799, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jack P. C. Kleijnen & Susan M. Sanchez & Thomas W. Lucas & Thomas M. Cioppa, 2005. "State-of-the-Art Review: A User’s Guide to the Brave New World of Designing Simulation Experiments," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 263-289, August.
    2. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    3. Kleijnen, Jack P. C., 2005. "An overview of the design and analysis of simulation experiments for sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 164(2), pages 287-300, July.
    4. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    5. Kleijnen, J.P.C., 2007. "Simulation Experiments in Practice : Statistical Design and Regression Analysis," Discussion Paper 2007-30, Tilburg University, Center for Economic Research.
    6. J P C Kleijnen & W C M van Beers, 2004. "Application-driven sequential designs for simulation experiments: Kriging metamodelling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(8), pages 876-883, August.
    7. Scott L. Rosen & Christopher P. Saunders & Samar K Guharay, 2015. "A Structured Approach for Rapidly Mapping Multilevel System Measures via Simulation Metamodeling," Systems Engineering, John Wiley & Sons, vol. 18(1), pages 87-101, January.
    8. Kleijnen, J.P.C., 2006. "White Noise Assumptions Revisited : Regression Models and Statistical Designs for Simulation Practice," Other publications TiSEM d8c37ad3-f9a5-4824-986d-2, Tilburg University, School of Economics and Management.
    9. Stinstra, E., 2006. "The meta-model approach for simulation-based design optimization," Other publications TiSEM 713f828a-4716-4a19-af00-e, Tilburg University, School of Economics and Management.
    10. Kleijnen, Jack P.C. & Deflandre, David, 2006. "Validation of regression metamodels in simulation: Bootstrap approach," European Journal of Operational Research, Elsevier, vol. 170(1), pages 120-131, April.
    11. Katarzyna Growiec & Jakub Growiec & Bogumil Kaminski, 2017. "Social Network Structure and The Trade-Off Between Social Utility and Economic Performance," KAE Working Papers 2017-026, Warsaw School of Economics, Collegium of Economic Analysis.
    12. Kull, Thomas & Closs, David, 2008. "The risk of second-tier supplier failures in serial supply chains: Implications for order policies and distributor autonomy," European Journal of Operational Research, Elsevier, vol. 186(3), pages 1158-1174, May.
    13. Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    14. Ganga, Gilberto Miller Devós & Carpinetti, Luiz Cesar Ribeiro, 2011. "A fuzzy logic approach to supply chain performance management," International Journal of Production Economics, Elsevier, vol. 134(1), pages 177-187, November.
    15. Lavoie, P. & Gharbi, A. & Kenné, J.-P., 2010. "A comparative study of pull control mechanisms for unreliable homogenous transfer lines," International Journal of Production Economics, Elsevier, vol. 124(1), pages 241-251, March.
    16. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    17. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    18. H A Akkermans & K E van Oorschot, 2005. "Relevance assumed: a case study of balanced scorecard development using system dynamics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 931-941, August.
    19. Robert Engel & Worarat Krathu & Marco Zapletal & Christian Pichler & R. P. Jagadeesh Chandra Bose & Wil Aalst & Hannes Werthner & Christian Huemer, 2016. "Analyzing inter-organizational business processes," Information Systems and e-Business Management, Springer, vol. 14(3), pages 577-612, August.
    20. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:62:y:2011:i:7:d:10.1057_jors.2010.64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.