IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v53y2002i8d10.1057_palgrave.jors.2601390.html
   My bibliography  Save this article

Comparing an ACO algorithm with other heuristics for the single machine scheduling problem with sequence-dependent setup times

Author

Listed:
  • C Gagné

    (Université du Québec, Chicoutimi)

  • W L Price

    (Université Laval)

  • M Gravel

    (Université du Québec, Chicoutimi)

Abstract

We compare several heuristics for solving a single machine scheduling problem. In the operating situation modelled, setup times are sequence-dependent and the objective is to minimize total tardiness. We describe an Ant Colony Optimization (ACO) algorithm having a new feature using look-ahead information in the transition rule. This feature shows an improvement in performance. A comparison with a genetic algorithm, a simulated annealing approach, a local search method and a branch-and-bound algorithm indicates that the ACO that we describe is competitive and has a certain advantage for larger problems.

Suggested Citation

  • C Gagné & W L Price & M Gravel, 2002. "Comparing an ACO algorithm with other heuristics for the single machine scheduling problem with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(8), pages 895-906, August.
  • Handle: RePEc:pal:jorsoc:v:53:y:2002:i:8:d:10.1057_palgrave.jors.2601390
    DOI: 10.1057/palgrave.jors.2601390
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601390
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferretti, Ivan & Zanoni, Simone & Zavanella, Lucio, 2006. "Production-inventory scheduling using Ant System metaheuristic," International Journal of Production Economics, Elsevier, vol. 104(2), pages 317-326, December.
    2. C Gagné & M Gravel & W L Price, 2005. "Using metaheuristic compromise programming for the solution of multiple-objective scheduling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 687-698, June.
    3. Shih-Wei Lin & Zne-Jung Lee & Kuo-Ching Ying & Rong-Ho Lin, 2011. "Meta-heuristic algorithms for wafer sorting scheduling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 165-174, January.
    4. Socha, Krzysztof & Dorigo, Marco, 2008. "Ant colony optimization for continuous domains," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1155-1173, March.
    5. Hanen Akrout & Bassem Jarboui & Patrick Siarry & Abdelwaheb Rebaï, 2012. "A GRASP based on DE to solve single machine scheduling problem with SDST," Computational Optimization and Applications, Springer, vol. 51(1), pages 411-435, January.
    6. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    7. Gupta, Skylab R. & Smith, Jeffrey S., 2006. "Algorithms for single machine total tardiness scheduling with sequence dependent setups," European Journal of Operational Research, Elsevier, vol. 175(2), pages 722-739, December.
    8. Arthur Kramer & Anand Subramanian, 2019. "A unified heuristic and an annotated bibliography for a large class of earliness–tardiness scheduling problems," Journal of Scheduling, Springer, vol. 22(1), pages 21-57, February.
    9. S-W Lin & K-C Ying, 2008. "A hybrid approach for single-machine tardiness problems with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1109-1119, August.
    10. Edward Sewell & Jason Sauppe & David Morrison & Sheldon Jacobson & Gio Kao, 2012. "A BB&R algorithm for minimizing total tardiness on a single machine with sequence dependent setup times," Journal of Global Optimization, Springer, vol. 54(4), pages 791-812, December.
    11. Miguel A. González & Juan José Palacios & Camino R. Vela & Alejandro Hernández-Arauzo, 2017. "Scatter search for minimizing weighted tardiness in a single machine scheduling with setups," Journal of Heuristics, Springer, vol. 23(2), pages 81-110, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:53:y:2002:i:8:d:10.1057_palgrave.jors.2601390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.