IDEAS home Printed from https://ideas.repec.org/a/pal/jmarka/v9y2021i2d10.1057_s41270-020-00102-7.html
   My bibliography  Save this article

Marketing response and temporal aggregation

Author

Listed:
  • Philip Hans Franses

    (Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam)

Abstract

This paper deals with inferring key parameters on marketing response at a true high frequency while data are partly or fully available only at a lower frequency aggregate levels. The familiar Koyck model turns out to be very useful for this purpose. Assuming this model for the high-frequency data makes it possible to infer the high-frequency parameters from modified Koyck type models when lower frequency data are available. This means that inference using the Koyck model is robust to temporal aggregation.

Suggested Citation

  • Philip Hans Franses, 2021. "Marketing response and temporal aggregation," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(2), pages 111-117, June.
  • Handle: RePEc:pal:jmarka:v:9:y:2021:i:2:d:10.1057_s41270-020-00102-7
    DOI: 10.1057/s41270-020-00102-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41270-020-00102-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41270-020-00102-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Franses, Philip Hans & van Oest, Rutger, 2007. "On the econometrics of the geometric lag model," Economics Letters, Elsevier, vol. 95(2), pages 291-296, May.
    2. Frank M. Bass & Robert P. Leone, 1983. "Temporal Aggregation, the Data Interval Bias, and Empirical Estimation of Bimonthly Relations from Annual Data," Management Science, INFORMS, vol. 29(1), pages 1-11, January.
    3. Herrington, J. Duncan & Dempsey, William A., 2005. "Comparing the Current Effects and Carryover of National-, Regional-, and Local-Sponsor Advertising," Journal of Advertising Research, Cambridge University Press, vol. 45(1), pages 60-72, March.
    4. Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010. "Regression models with mixed sampling frequencies," Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
    5. Ketan Mulchandani & Kalyani Mulchandani & Rekha Attri, 2019. "An assessment of advertising effectiveness of Indian banks using Koyck model," Journal of Advances in Management Research, Emerald Group Publishing Limited, vol. 16(4), pages 498-512, March.
    6. Gerard J. Tellis & Philip Hans Franses, 2006. "Optimal Data Interval for Estimating Advertising Response," Marketing Science, INFORMS, vol. 25(3), pages 217-229, 05-06.
    7. Yoo, Boonghee & Mandhachitara, Rujirutana, 2003. "Estimating Advertising Effects on Sales in a Competitive Setting," Journal of Advertising Research, Cambridge University Press, vol. 43(3), pages 310-321, September.
    8. Lizhen Xu & Jason A. Duan & Andrew Whinston, 2014. "Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion," Management Science, INFORMS, vol. 60(6), pages 1392-1412, June.
    9. Ralph Breuer & Malte Brettel & Andreas Engelen, 2011. "Incorporating long-term effects in determining the effectiveness of different types of online advertising," Marketing Letters, Springer, vol. 22(4), pages 327-340, November.
    10. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    11. Antonio G. Chessa & Jaap M. J. Murre, 2007. "A Neurocognitive Model of Advertisement Content and Brand Name Recall," Marketing Science, INFORMS, vol. 26(1), pages 130-141, 01-02.
    12. Sood, Ashish & Kappe, Eelco & Stremersch, Stefan, 2014. "The commercial contribution of clinical studies for pharmaceutical drugs," International Journal of Research in Marketing, Elsevier, vol. 31(1), pages 65-77.
    13. Seshadri Tirunillai & Gerard J. Tellis, 2012. "Does Chatter Really Matter? Dynamics of User-Generated Content and Stock Performance," Marketing Science, INFORMS, vol. 31(2), pages 198-215, March.
    14. Kiygi Calli, Meltem & Weverbergh, Marcel & Franses, Philip Hans, 2012. "The effectiveness of high-frequency direct-response commercials," International Journal of Research in Marketing, Elsevier, vol. 29(1), pages 98-109.
    15. Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
    16. Eelco Kappe & Ashley Stadler Blank & Wayne S. DeSarbo, 2014. "A General Multiple Distributed Lag Framework for Estimating the Dynamic Effects of Promotions," Management Science, INFORMS, vol. 60(6), pages 1489-1510, June.
    17. Robert P. Leone, 1995. "Generalizing What Is Known About Temporal Aggregation and Advertising Carryover," Marketing Science, INFORMS, vol. 14(3_supplem), pages 141-150.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiygi-Calli, Meltem & Weverbergh, Marcel & Franses, Philip Hans, 2017. "Modeling intra-seasonal heterogeneity in hourly advertising-response models: Do forecasts improve?," International Journal of Forecasting, Elsevier, vol. 33(1), pages 90-101.
    2. Eelco Kappe & Ashley Stadler Blank & Wayne S. DeSarbo, 2014. "A General Multiple Distributed Lag Framework for Estimating the Dynamic Effects of Promotions," Management Science, INFORMS, vol. 60(6), pages 1489-1510, June.
    3. Breuer, Ralph & Brettel, Malte, 2012. "Short- and Long-term Effects of Online Advertising: Differences between New and Existing Customers," Journal of Interactive Marketing, Elsevier, vol. 26(3), pages 155-166.
    4. Li, Yang & Liu, Feng, 2021. "Joint inventory and pricing control with lagged price responses," International Journal of Production Economics, Elsevier, vol. 241(C).
    5. Ralph Breuer & Malte Brettel & Andreas Engelen, 2011. "Incorporating long-term effects in determining the effectiveness of different types of online advertising," Marketing Letters, Springer, vol. 22(4), pages 327-340, November.
    6. Marie Bessec, 2019. "Revisiting the transitional dynamics of business cycle phases with mixed-frequency data," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 711-732, August.
    7. Luca Barbaglia & Sergio Consoli & Sebastiano Manzan, 2024. "Forecasting GDP in Europe with textual data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 338-355, March.
    8. Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
    9. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    10. Nava, Consuelo R. & Osti, Linda & Zoia, Maria Grazia, 2022. "Forecasting Domestic Tourism across Regional Destinations through MIDAS Regressions," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202207, University of Turin.
    11. Zizhuo Wang & Chaolin Yang & Hongsong Yuan & Yaowu Zhang, 2021. "Aggregation Bias in Estimating Log‐Log Demand Function," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 3906-3922, November.
    12. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    13. Bec, Frédérique & Mogliani, Matteo, 2015. "Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
    14. Dorji, Karma Minjur Phuntsho, 2024. "Exploring Nowcasting Techniques for Real-Time GDP Estimation in Bhutan," MPRA Paper 121380, University Library of Munich, Germany, revised 30 Jun 2024.
    15. Thomas Niemand & Sascha Kraus & Sophia Mather & Antonio C. Cuenca-Ballester, 2020. "Multilevel marketing: optimizing marketing effectiveness for high-involvement goods in the automotive industry," International Entrepreneurship and Management Journal, Springer, vol. 16(4), pages 1367-1392, December.
    16. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    17. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    18. Guitart, Ivan A. & Hervet, Guillaume, 2017. "The impact of contextual television ads on online conversions: An application in the insurance industry," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 480-498.
    19. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil prices," MPRA Paper 77531, University Library of Munich, Germany.
    20. Ana Beatriz Galvão & Michael Owyang, 2022. "Forecasting low‐frequency macroeconomic events with high‐frequency data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1314-1333, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jmarka:v:9:y:2021:i:2:d:10.1057_s41270-020-00102-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.