IDEAS home Printed from https://ideas.repec.org/a/pal/jmarka/v12y2024i4d10.1057_s41270-023-00284-w.html
   My bibliography  Save this article

Hey ChatGPT: an examination of ChatGPT prompts in marketing

Author

Listed:
  • Wondwesen Tafesse

    (United Arab Emirates University)

  • Bronwyn Wood

    (United Arab Emirates University)

Abstract

Marketing is one of the areas where large language models (LLMs) such as ChatGPT have found practical applications. This study examines marketing prompts—text inputs created by marketers to guide LLMs in generating desired outputs. By combining insights from the marketing literature and the latest research on LLMs, the study develops a conceptual framework around three key features of marketing prompts: prompt domain (the specific marketing actions that the prompts target), prompt appeal (the intended output of the prompts being informative or emotional), and prompt format (the intended output of the prompts being generic or contextual). The study collected hundreds of marketing prompt templates shared on X (formerly Twitter) and analyzed them using a combination of natural language processing techniques and descriptive statistics. The findings indicate that the prompt templates target a wide range of marketing domains—about 16 altogether. Likewise, the findings indicate that most of the marketing prompts are designed to generate informative output (as opposed to emotionally engaging output). Further, the findings indicate that the marketing prompts are designed to generate a balanced mix of generic and contextual output. The study further finds that the use of prompt appeal and prompt format differs by prompt domain.

Suggested Citation

  • Wondwesen Tafesse & Bronwyn Wood, 2024. "Hey ChatGPT: an examination of ChatGPT prompts in marketing," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(4), pages 790-805, December.
  • Handle: RePEc:pal:jmarka:v:12:y:2024:i:4:d:10.1057_s41270-023-00284-w
    DOI: 10.1057/s41270-023-00284-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41270-023-00284-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41270-023-00284-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Gerling & Stefan Lessmann, 2024. "Leveraging AI and NLP for Bank Marketing: A Systematic Review and Gap Analysis," Papers 2411.14463, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jmarka:v:12:y:2024:i:4:d:10.1057_s41270-023-00284-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.