IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v9y2010i1p44-68.html
   My bibliography  Save this article

Enfoques de programación matemática fuzzy multiobjetivo para la planificación operativa del transporte en una cadena de suministro del sector del automóvil = Fuzzy Multiobjective Mathematical Programming Approaches for Operational Transport Planning in an Automobile Supply Chain

Author

Listed:
  • Díaz-Madroñero, Manuel

    (Centro de Investigación Gestión e Ingeniería de Producción (CIGIP), Universidad Politécnica de Valencia (España))

  • Peidro, David

    (Centro de Investigación Gestión e Ingeniería de Producción (CIGIP), Universidad Politécnica de Valencia (España))

  • Mula, Josefa

    (Centro de Investigación Gestión e Ingeniería de Producción (CIGIP), Universidad Politécnica de Valencia (España))

  • Ferriols, Francisco J.

    (Departamento de Organización de Empresas, Universidad Politécnica de Valencia (España))

Abstract

En este trabajo se presenta un modelo de programación matemática fuzzy multiobjetivo para la planificación del transporte a nivel operativo en una cadena de suministro. Los objetivos del modelo propuesto son la minimización del número de camiones utilizados y del inventario total, considerando como parámetro borroso las capacidades de los vehículos empleados. Se propone una metodología de resolución para transformar el modelo original en un modelo de programación lineal entera mixta con un único objetivo, aplicando diferentes enfoques recogidos en la literatura. El modelo propuesto sevalida con datos pertenecientes a una cadena de suministro real del sector del automóvil. Por último, los resultados obtenidos para cada uno de los enfoques empleados muestran la mejora aportada por el modelo propuesto respecto al procedimiento heurístico para la toma de decisiones empleado en la cadena de suministro de estudio. In this paper, a fuzzy multiobjective mathematical programming model foroperational transport planning in a supply chain is presented. The objectives of the proposed model are the minimization of the number of used trucks and the total inventory level, by considering vehicle capacities as a fuzzy parameter. We propose a solution methodology to transform the original model into a mixed integer linear programming model with a single objective by using different approaches in the literature. The proposed model is validated with data from a real-world automobile supply chain. Finally, the results for each of the approaches show the improvement obtained by the proposed model in comparison to the heuristic procedure for decision making used in the supply chain under study.

Suggested Citation

  • Díaz-Madroñero, Manuel & Peidro, David & Mula, Josefa & Ferriols, Francisco J., 2010. "Enfoques de programación matemática fuzzy multiobjetivo para la planificación operativa del transporte en una cadena de suministro del sector del automóvil = Fuzzy Multiobjective Mathematical Programm," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 9(1), pages 44-68, June.
  • Handle: RePEc:pab:rmcpee:v:9:y:2010:i:1:p:44-68
    as

    Download full text from publisher

    File URL: http://www.upo.es/RevMetCuant/art37.pdf
    Download Restriction: no

    File URL: http://www.upo.es/RevMetCuant/art37.txt
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Werners, Brigitte, 1987. "Interactive multiple objective programming subject to flexible constraints," European Journal of Operational Research, Elsevier, vol. 31(3), pages 342-349, September.
    3. Ertogral, Kadir, 2008. "Multi-item single source ordering problem with transportation cost: A Lagrangian decomposition approach," European Journal of Operational Research, Elsevier, vol. 191(1), pages 156-165, November.
    4. Allen, W Bruce & Liu, Dong, 1995. "Service Quality and Motor Carrier Costs: An Empirical Analysis," The Review of Economics and Statistics, MIT Press, vol. 77(3), pages 499-510, August.
    5. Wang, Reay-Chen & Liang, Tien-Fu, 2005. "Applying possibilistic linear programming to aggregate production planning," International Journal of Production Economics, Elsevier, vol. 98(3), pages 328-341, December.
    6. Quan Lu & Maged Dessouky, 2004. "An Exact Algorithm for the Multiple Vehicle Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 38(4), pages 503-514, November.
    7. Jimenez, F. & Verdegay, J. L., 1999. "Solving fuzzy solid transportation problems by an evolutionary algorithm based parametric approach," European Journal of Operational Research, Elsevier, vol. 117(3), pages 485-510, September.
    8. Pan, Zhendong & Tang, Jiafu & Fung, Richard Y.K., 2009. "Synchronization of inventory and transportation under flexible vehicle constraint: A heuristics approach using sliding windows and hierarchical tree structure," European Journal of Operational Research, Elsevier, vol. 192(3), pages 824-836, February.
    9. Shih, Li-Hsing, 1999. "Cement transportation planning via fuzzy linear programming," International Journal of Production Economics, Elsevier, vol. 58(3), pages 277-287, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cunico, Maria Laura & Flores, Julio Rolando & Vecchietti, Aldo, 2017. "Investment in the energy sector: An optimization model that contemplates several uncertain parameters," Energy, Elsevier, vol. 138(C), pages 831-845.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasant, Pandian M. & Barsoum, Nader N. & Bhattacharya, Arijit, 2008. "Possibilistic optimization in planning decision of construction industry," International Journal of Production Economics, Elsevier, vol. 111(2), pages 664-675, February.
    2. P. Senthil Kumar, 2019. "PSK Method for Solving Mixed and Type-4 Intuitionistic Fuzzy Solid Transportation Problems," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 10(2), pages 20-53, April.
    3. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
    4. Tzeng, Gwo-Hshiung & Teodorovic, Dusan & Hwang, Ming-Jiu, 1996. "Fuzzy bicriteria multi-index transportation problems for coal allocation planning of Taipower," European Journal of Operational Research, Elsevier, vol. 95(1), pages 62-72, November.
    5. Chia-Nan Wang & Thanh-Tuan Dang & Tran Quynh Le & Panitan Kewcharoenwong, 2020. "Transportation Optimization Models for Intermodal Networks with Fuzzy Node Capacity, Detour Factor, and Vehicle Utilization Constraints," Mathematics, MDPI, vol. 8(12), pages 1-27, November.
    6. Figueroa–García, Juan Carlos & Hernández, Germán & Franco, Carlos, 2022. "A review on history, trends and perspectives of fuzzy linear programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    7. Pereira, Daniel Filipe & Oliveira, José Fernando & Carravilla, Maria Antónia, 2020. "Tactical sales and operations planning: A holistic framework and a literature review of decision-making models," International Journal of Production Economics, Elsevier, vol. 228(C).
    8. P.Senthil Kumar, 2018. "PSK Method for Solving Intuitionistic Fuzzy Solid Transportation Problems," International Journal of Fuzzy System Applications (IJFSA), IGI Global, vol. 7(4), pages 62-99, October.
    9. P. Senthil Kumar, 2018. "A Simple and Efficient Algorithm for Solving Type-1 Intuitionistic Fuzzy Solid Transportation Problems," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 9(3), pages 90-122, July.
    10. Mula, Josefa & Peidro, David & Poler, Raul, 2010. "The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand," International Journal of Production Economics, Elsevier, vol. 128(1), pages 136-143, November.
    11. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    12. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    13. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    14. Kim, Jong Soon & Whang, Kyu-Seung, 1998. "A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function," European Journal of Operational Research, Elsevier, vol. 107(3), pages 614-624, June.
    15. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    16. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    17. Víctor G. Alfaro-García & Anna M. Gil-Lafuente & Gerardo G. Alfaro Calderón, 2017. "A fuzzy approach to a municipality grouping model towards creation of synergies," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 391-408, September.
    18. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    19. Milton Madison & James MacDonald & Michael Ollinger, 2000. "Technological Change and Economies of Scale in U.S. Poultry Slaughter," Working Papers 00-05, Center for Economic Studies, U.S. Census Bureau.
    20. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.

    More about this item

    Keywords

    planificación de la cadena de suministro; planificación del transporte; programación lineal fuzzy multiobjetivo; incertidumbre; supply chain planning; transport planning; fuzzy multiobjective linear programming; uncertainty;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • L00 - Industrial Organization - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:9:y:2010:i:1:p:44-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.