IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v24y2017i1p5-24.html
   My bibliography  Save this article

Predicci—n de fracaso en empresas latinoamericanas utilizando el mŽtodo del vecino más cercano para predecir efectos aleatorios en modelos mixtos || Prediction of Failure in Latin-American Companies Using the Nearest-Neighbor Method to Predict Random Effects in Mixed Models

Author

Listed:
  • Caro, Norma Patricia

    (Facultad de Ciencias Econ—micas. Universidad Nacional de C—rdoba (Argentina))

  • Arias, Ver—nica

    (Facultad de Ciencias Econ—micas. Universidad Nacional de C—rdoba (Argentina))

  • Ortiz, Pablo

    (Facultad de Ciencias Econ—micas. Universidad Nacional de C—rdoba (Argentina))

Abstract

En la presente dŽcada, en econom’as emergentes como las latinoamericanas, se han comenzado a aplicar modelos log’sticos mixtos para predecir el fracaso financiero de las empresas. No obstante, existen limitaciones subyacentes a la metodología, vinculadas a la factibilidad de predicción del estado de nuevas empresas que no han formado parte de la muestra de entrenamiento con la que se estimó el modelo. En la literatura se han propuesto diversos métodos de predicción para los efectos aleatorios que forman parte de los modelos mixtos, entre ellos, el del vecino más cercano. Este método es aplicado en una segunda etapa, luego de la estimación de un modelo que explica la situación financiera (en crisis o sana) de las empresas mediante la consideración del comportamiento de sus ratios contables. En el presente trabajo, se consideraron empresas de Argentina, Chile y Perú, estimando los efectos aleatorios que resultaron significativos en la estimación del modelo mixto. De este modo, se concluye que la aplicación de este método permite identificar empresas con problemas financieros con una tasa de clasificación correcta superior a 80%, lo cual cobra relevancia en la modelación y predicción de este tipo de riesgo. || In the present decade, in emerging economies such as those in Latin-America, mixed logistic models have been started applying to predict the financial failure of companies. However, there are limitations for the methodology linked to the feasibility of predicting the state of new companies that have not been part of the training sample which was used to estimate the model. In the literature, several methods have been proposed for predicting random effects in the mixed models such as, for example, the nearest neighbor. This method is applied in a second step, after estimating a model that explains the financial situation (in crisis or healthy) of companies by considering the behavior of its financial ratios. In this study, companies from Argentina, Chile and Peru were considered, estimating the random effects that were significant in the estimation of the mixed model. Thus, we conclude that the application of these methods allow for identifying companies with financial problems with a correct classification rate of over 80%, which becomes important in modeling and predicting this risk.

Suggested Citation

  • Caro, Norma Patricia & Arias, Ver—nica & Ortiz, Pablo, 2017. "Predicci—n de fracaso en empresas latinoamericanas utilizando el mŽtodo del vecino más cercano para predecir efectos aleatorios en modelos mixtos || Prediction of Failure in Latin-American Companies U," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 24(1), pages 5-24, Diciembre.
  • Handle: RePEc:pab:rmcpee:v:24:y:2017:i:1:p:5-24
    as

    Download full text from publisher

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2878
    Download Restriction: no

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2878/2275
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David A. Hensher & Stewart Jones, 2007. "Forecasting Corporate Bankruptcy: Optimizing the Performance of the Mixed Logit Model," Abacus, Accounting Foundation, University of Sydney, vol. 43(3), pages 241-264, September.
    2. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    3. Jones, Stewart & Hensher, David A., 2007. "Modelling corporate failure: A multinomial nested logit analysis for unordered outcomes," The British Accounting Review, Elsevier, vol. 39(1), pages 89-107.
    4. Felipe Zurita, 2008. "La Predicción de la Insolvencia de Empresas Chilenas," Documentos de Trabajo 336, Instituto de Economia. Pontificia Universidad Católica de Chile..
    5. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    6. Tamura, Karin Ayumi & Giampaoli, Viviana, 2013. "New prediction method for the mixed logistic model applied in a marketing problem," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 202-216.
    7. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    8. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    9. Altman, Edward I., 2005. "An emerging market credit scoring system for corporate bonds," Emerging Markets Review, Elsevier, vol. 6(4), pages 311-323, December.
    10. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    11. Edward I Altman & Tara K N Baidya & Luis Manoel Ribeiro Dias, 1979. "Assessing Potential Financial Problems for Firms in Brazil," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 10(2), pages 9-24, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdely, Arturo, 2017. "Value at Risk and the Diversification Dogma || Valor en riesgo y el dogma de la diversificación," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 24(1), pages 209-219, Diciembre.
    2. Maurice Peat & Stewart Jones, 2012. "Using Neural Nets To Combine Information Sets In Corporate Bankruptcy Prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 90-101, April.
    3. Fayçal Mraihi & Inane Kanzari & Mohamed Tahar Rajhi, 2015. "Development of a Prediction Model of Failure in Tunisian Companies: Comparison between Logistic Regression and Support Vector Machines," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(3), pages 184-205.
    4. Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.
    5. Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," JRFM, MDPI, vol. 12(4), pages 1-17, September.
    6. Vo, D.H. & Pham, B.V.-N. & Pham, T.V.-T. & McAleer, M.J., 2019. "Corporate Financial Distress of Industry Level Listings in an Emerging Market," Econometric Institute Research Papers EI2019-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Leila Bateni & Farshid Asghari, 2020. "Bankruptcy Prediction Using Logit and Genetic Algorithm Models: A Comparative Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 335-348, January.
    8. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    9. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    10. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    11. Asis, Gonzalo & Chari, Anusha & Haas, Adam, 2021. "In search of distress risk in emerging markets," Journal of International Economics, Elsevier, vol. 131(C).
    12. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    13. Amin Jan & Maran Marimuthu & Muhammad Kashif Shad & Haseeb ur-Rehman & Muhammad Zahid & Ahmad Ali Jan, 2019. "Bankruptcy profile of the Islamic and conventional banks in Malaysia: a post-crisis period analysis," Economic Change and Restructuring, Springer, vol. 52(1), pages 67-87, February.
    14. Mark Clintworth & Dimitrios Lyridis & Evangelos Boulougouris, 2023. "Financial risk assessment in shipping: a holistic machine learning based methodology," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 90-121, March.
    15. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    16. Skogsvik, Kenth, 2005. "On the Choice-Based Sample Bias in Probabilistic Business Failure Prediction," SSE/EFI Working Paper Series in Business Administration 2005:13, Stockholm School of Economics, revised 09 Jan 2006.
    17. Grunert, Jens & Norden, Lars & Weber, Martin, 2005. "The role of non-financial factors in internal credit ratings," Journal of Banking & Finance, Elsevier, vol. 29(2), pages 509-531, February.
    18. Jones, Stewart & Hensher, David A., 2007. "Modelling corporate failure: A multinomial nested logit analysis for unordered outcomes," The British Accounting Review, Elsevier, vol. 39(1), pages 89-107.
    19. Evangelos C. Charalambakis, 2015. "On the Prediction of Corporate Financial Distress in the Light of the Financial Crisis: Empirical Evidence from Greek Listed Firms," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 22(3), pages 407-428, November.
    20. Koresh Galil, 2005. "Ratings as Predictors of Default in the Long Term:an Empirical Investigation," Working Papers 0505, Ben-Gurion University of the Negev, Department of Economics.

    More about this item

    Keywords

    fracaso empresarial; ratios contables; modelos mixtos; predicción; vecino más cercano; business failure; accounting ratios; mixed model; prediction; nearest neighbors;
    All these keywords.

    JEL classification:

    • M41 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting - - - Accounting
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:24:y:2017:i:1:p:5-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.