IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v16y2013i1p200-215.html
   My bibliography  Save this article

Predicción de quiebras empresariales en economías emergentes: uso de un modelo logístico mixto || Bankruptcy Prediction in Emerging Economies: Use of a Mixed Logistic Model

Author

Listed:
  • Caro, Norma Patricia

    (Facultad de Ciencias Económicas. Universidad Nacional de Córdoba (Argentina))

  • Díaz, Margarita

    (Facultad de Ciencias Económicas. Universidad Nacional de Córdoba (Argentina))

  • Porporato, Marcela

    (School of Administrative Studies (SAS). York University, Toronto (Canadá))

Abstract

Este trabajo replica y adapta el modelo de Jones y Hensher (2004) a los datos de una economía emergente con el propósito de evaluar su validez externa. Se compara el desempeño del modelo logístico estándar en relación con el modelo logístico mixto para predecir el riesgo de crisis en el periodo 1993-2000, utilizando estados contables de empresas argentinas y ratios definidos en estudios de Altman y Jones y Hensher. Como en estudios anteriores, rentabilidad, rotación, endeudamiento y flujo de fondos operativos explican la probabilidad de crisis financiera. La contribución de esta nueva metodología reduce la tasa de error del tipo I a un 9 %. Se demuestra que el modelo logístico mixto, que tiene en cuenta la heterogeneidad no observada, supera ampliamente el desempeño del modelo logístico estándar. || This study is a replication and adaptation of Jones and Hensher (2004) model in an emerging economy with the purpose of testing its eternal validity. It compares the logistic standard model's performance with the logistic mixed model to predict bankruptcy risk of Argentinean companies between 1993-2000 by using financial statements and ratios defined in previous studies by Altman and Jones and Hensher. Similar to previous studies, profitability, asset turnover, debt and cash flow from operations explain financial distress' probability. The main contribution of this new methodology is the important reduction of error type I to the 9 %. This study asserts that the logistic mixed model, that considers the effect of non-observed heterogeneity, significantly improves the performance of the logistic standard model.

Suggested Citation

  • Caro, Norma Patricia & Díaz, Margarita & Porporato, Marcela, 2013. "Predicción de quiebras empresariales en economías emergentes: uso de un modelo logístico mixto || Bankruptcy Prediction in Emerging Economies: Use of a Mixed Logistic Model," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 16(1), pages 200-215, December.
  • Handle: RePEc:pab:rmcpee:v:16:y:2013:i:1:p:200-215
    as

    Download full text from publisher

    File URL: http://www.upo.es/RevMetCuant/pdf/vol16/art84.pdf
    Download Restriction: no

    File URL: http://www.upo.es/RevMetCuant/bibtex.php?id=84
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    2. Tamura, Karin Ayumi & Giampaoli, Viviana, 2013. "New prediction method for the mixed logistic model applied in a marketing problem," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 202-216.
    3. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    4. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, September.
    6. Altman, Edward I., 1984. "The success of business failure prediction models : An international survey," Journal of Banking & Finance, Elsevier, vol. 8(2), pages 171-198, June.
    7. Edward I Altman & Tara K N Baidya & Luis Manoel Ribeiro Dias, 1979. "Assessing Potential Financial Problems for Firms in Brazil," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 10(2), pages 9-24, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdely, Arturo, 2017. "Value at Risk and the Diversification Dogma || Valor en riesgo y el dogma de la diversificación," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 24(1), pages 209-219, Diciembre.
    2. Caro, Norma Patricia & Arias, Ver—nica & Ortiz, Pablo, 2017. "Predicci—n de fracaso en empresas latinoamericanas utilizando el mŽtodo del vecino más cercano para predecir efectos aleatorios en modelos mixtos || Prediction of Failure in Latin-American Companies U," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 24(1), pages 5-24, Diciembre.
    3. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    4. Amin Jan & Maran Marimuthu & Muhammad Kashif Shad & Haseeb ur-Rehman & Muhammad Zahid & Ahmad Ali Jan, 2019. "Bankruptcy profile of the Islamic and conventional banks in Malaysia: a post-crisis period analysis," Economic Change and Restructuring, Springer, vol. 52(1), pages 67-87, February.
    5. García-Gallego, Ana & Mures-Quintana, María-Jesús, 2013. "La muestra de empresas en los modelos de predicción del fracaso: influencia en los resultados de clasificación || The Sample of Firms in Business Failure Prediction Models: Influence on Classification," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 15(1), pages 133-150, June.
    6. David A. Hensher & Stewart Jones & William H. Greene, 2007. "An Error Component Logit Analysis of Corporate Bankruptcy and Insolvency Risk in Australia," The Economic Record, The Economic Society of Australia, vol. 83(260), pages 86-103, March.
    7. Jones, Stewart & Hensher, David A., 2007. "Modelling corporate failure: A multinomial nested logit analysis for unordered outcomes," The British Accounting Review, Elsevier, vol. 39(1), pages 89-107.
    8. Becchetti, Leonardo & Castelli, Annalisa & Hasan, Iftekhar, 2008. "Investment-cash flow sensitivities, credit rationing and financing constraints," Research Discussion Papers 15/2008, Bank of Finland.
    9. Leonardo Becchetti & Annalisa Castelli & Iftekhar Hasan, 2010. "Investment–cash flow sensitivities, credit rationing and financing constraints in small and medium-sized firms," Small Business Economics, Springer, vol. 35(4), pages 467-497, November.
    10. Misund, Bård, 2015. "Financial Ratios and Prediction on Corporate Bankruptcy in the Atlantic Salmon Industry," UiS Working Papers in Economics and Finance 2015/9, University of Stavanger.
    11. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    12. Bose, Indranil & Pal, Raktim, 2006. "Predicting the survival or failure of click-and-mortar corporations: A knowledge discovery approach," European Journal of Operational Research, Elsevier, vol. 174(2), pages 959-982, October.
    13. Dimitras, A. I. & Slowinski, R. & Susmaga, R. & Zopounidis, C., 1999. "Business failure prediction using rough sets," European Journal of Operational Research, Elsevier, vol. 114(2), pages 263-280, April.
    14. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    15. Ashraf, Sumaira & Félix, Elisabete G.S. & Serrasqueiro, Zélia, 2020. "Development and testing of an augmented distress prediction model: A comparative study on a developed and an emerging market," Journal of Multinational Financial Management, Elsevier, vol. 57.
    16. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    17. Becchetti, Leonardo & Castelli, Annalisa & Hasan, Iftekhar, 2008. "Investment-cash flow sensitivities, credit rationing and financing constraints," Bank of Finland Research Discussion Papers 15/2008, Bank of Finland.
    18. repec:zbw:bofrdp:2008_015 is not listed on IDEAS
    19. Fayçal Mraihi & Inane Kanzari & Mohamed Tahar Rajhi, 2015. "Development of a Prediction Model of Failure in Tunisian Companies: Comparison between Logistic Regression and Support Vector Machines," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(3), pages 184-205.
    20. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    21. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).

    More about this item

    Keywords

    modelo logístico mixto; estados contables; ratios financieros; crisis financiera; predicción de quiebra; Argentina; mixed logistic model; financial statements; accounting ratios; financial distress; bankruptcy prediction; Argentina;
    All these keywords.

    JEL classification:

    • M4 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:16:y:2013:i:1:p:200-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.