IDEAS home Printed from https://ideas.repec.org/a/oup/restud/v76y2009i2p413-450.html
   My bibliography  Save this article

Simulated Non-Parametric Estimation of Dynamic Models

Author

Listed:
  • Filippo Altissimo
  • Antonio Mele

Abstract

This paper introduces a new class of parameter estimators for dynamic models, called simulated non-parametric estimators (SNEs). The SNE minimizes appropriate distances between non-parametric conditional (or joint) densities estimated from sample data and non-parametric conditional (or joint) densities estimated from data simulated out of the model of interest. Sample data and model-simulated data are smoothed with the same kernel, which considerably simplifies bandwidth selection for the purpose of implementing the estimator. Furthermore, the SNE displays the same asymptotic efficiency properties as the maximum-likelihood estimator as soon as the model is Markov in the observable variables. The methods introduced in this paper are fairly simple to implement, and possess finite sample properties that are well approximated by the asymptotic theory. We illustrate these features within typical estimation problems that arise in financial economics. Copyright , Wiley-Blackwell.

Suggested Citation

  • Filippo Altissimo & Antonio Mele, 2009. "Simulated Non-Parametric Estimation of Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(2), pages 413-450.
  • Handle: RePEc:oup:restud:v:76:y:2009:i:2:p:413-450
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1467-937X.2008.00527.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kanaya, Shin & Kristensen, Dennis, 2016. "Estimation Of Stochastic Volatility Models By Nonparametric Filtering," Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
    2. Aït-Sahalia, Yacine & Fan, Jianqing & Peng, Heng, 2009. "Nonparametric Transition-Based Tests for Jump Diffusions," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1102-1116.
    3. Kukacka, Jiri & Jang, Tae-Seok & Sacht, Stephen, 2018. "On the estimation of behavioral macroeconomic models via simulated maximum likelihood," Economics Working Papers 2018-11, Christian-Albrechts-University of Kiel, Department of Economics.
    4. Corradi, Valentina & Distaso, Walter & Mele, Antonio, 2013. "Macroeconomic determinants of stock volatility and volatility premiums," Journal of Monetary Economics, Elsevier, vol. 60(2), pages 203-220.
    5. Dunbar, Geoffrey, 2013. "Returns-to-scale and the equity premium puzzle," Journal of Economic Dynamics and Control, Elsevier, vol. 37(9), pages 1736-1754.
    6. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    7. Carrasco, Marine & Chernov, Mikhail & Florens, Jean-Pierre & Ghysels, Eric, 2007. "Efficient estimation of general dynamic models with a continuum of moment conditions," Journal of Econometrics, Elsevier, vol. 140(2), pages 529-573, October.
    8. Kristensen, Dennis & Salanié, Bernard, 2017. "Higher-order properties of approximate estimators," Journal of Econometrics, Elsevier, vol. 198(2), pages 189-208.
    9. Corradi, Valentina & Swanson, Norman R., 2011. "Predictive density construction and accuracy testing with multiple possibly misspecified diffusion models," Journal of Econometrics, Elsevier, vol. 161(2), pages 304-324, April.
    10. Diep Duong & Norman Swanson, 2013. "Density and Conditional Distribution Based Specification Analysis," Departmental Working Papers 201312, Rutgers University, Department of Economics.
    11. Kukacka, Jiri & Sacht, Stephen, 2023. "Estimation of heuristic switching in behavioral macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    12. Giet, Ludovic & Lubrano, Michel, 2008. "A minimum Hellinger distance estimator for stochastic differential equations: An application to statistical inference for continuous time interest rate models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2945-2965, February.
    13. Dennis Kristensen & Bernard Salanié, 2010. "Higher Order Improvements for Approximate Estimators," CAM Working Papers 2010-04, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
    14. Takada, Teruko, 2009. "Simulated minimum Hellinger distance estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2390-2403, April.
    15. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    16. repec:hal:journl:peer-00796745 is not listed on IDEAS
    17. Nickl, Richard & Pötscher, Benedikt M., 2009. "Efficient Simulation-Based Minimum Distance Estimation and Indirect Inference," MPRA Paper 16608, University Library of Munich, Germany.
    18. Gach, Florian & Pötscher, Benedikt M., 2010. "Non-Parametric Maximum Likelihood Density Estimation and Simulation-Based Minimum Distance Estimators," MPRA Paper 27512, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:76:y:2009:i:2:p:413-450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/restud .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.