IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v20y2022i3p505-538..html
   My bibliography  Save this article

Hedging Long-Term Liabilities
[Pricing the Term Structure with Linear Regressions]

Author

Listed:
  • Rogier Quaedvlieg
  • Peter Schotman

Abstract

Pension funds and life insurers face interest rate risk arising from the duration mismatch of their assets and liabilities. With the aim of hedging long-term liabilities, we estimate variations of a Nelson–Siegel model using swap returns with maturities up to 50 years. We consider versions with three and five factors, as well as constant and time-varying factor loadings. We find that we need either five factors or time-varying factor loadings in the three-factor model to accommodate the long end of the yield curve. The resulting factor hedge portfolios perform poorly due to strong multicollinearity of the factor loadings in the long end, and are easily beaten by a robust, near Mean-Squared-Error- optimal, hedging strategy that concentrates its weight on the longest available liquid bond.

Suggested Citation

  • Rogier Quaedvlieg & Peter Schotman, 2022. "Hedging Long-Term Liabilities [Pricing the Term Structure with Linear Regressions]," Journal of Financial Econometrics, Oxford University Press, vol. 20(3), pages 505-538.
  • Handle: RePEc:oup:jfinec:v:20:y:2022:i:3:p:505-538.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbaa027
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael D. Bauer, 2018. "Restrictions on Risk Prices in Dynamic Term Structure Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(2), pages 196-211, April.
    2. Breitung, Jörg & Eickmeier, Sandra, 2011. "Testing for structural breaks in dynamic factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 71-84, July.
    3. Caio Almeida & Kym Ardison & Daniela Kubudi & Axel Simonsen & José Vicente, 2018. "Forecasting Bond Yields with Segmented Term Structure Models," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 1-33.
    4. Bams, Dennis & Schotman, Peter C., 2003. "Direct estimation of the risk neutral factor dynamics of Gaussian term structure models," Journal of Econometrics, Elsevier, vol. 117(1), pages 179-206, November.
    5. Adrian, Tobias & Crump, Richard K. & Moench, Emanuel, 2013. "Pricing the term structure with linear regressions," Journal of Financial Economics, Elsevier, vol. 110(1), pages 110-138.
    6. F. Blasques & S. J. Koopman & A. Lucas, 2015. "Information-theoretic optimality of observation-driven time series models for continuous responses," Biometrika, Biometrika Trust, vol. 102(2), pages 325-343.
    7. Bianchi, Francesco & Mumtaz, Haroon & Surico, Paolo, 2009. "The great moderation of the term structure of UK interest rates," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 856-871, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malik, Sheheryar & Meldrum, Andrew, 2016. "Evaluating the robustness of UK term structure decompositions using linear regression methods," Journal of Banking & Finance, Elsevier, vol. 67(C), pages 85-102.
    2. Duffee, Gregory, 2013. "Forecasting Interest Rates," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 385-426, Elsevier.
    3. Moench, Emanuel & Soofi-Siavash, Soroosh, 2022. "What moves treasury yields?," Journal of Financial Economics, Elsevier, vol. 146(3), pages 1016-1043.
    4. Kliem, Martin & Meyer-Gohde, Alexander, 2017. "(Un)expected Monetary Policy Shocks and Term Premia," SFB 649 Discussion Papers 2017-015, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Antonio Diez de Los Rios, 2015. "A New Linear Estimator for Gaussian Dynamic Term Structure Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 282-295, April.
    6. Kaminska, Iryna & Mumtaz, Haroon & Šustek, Roman, 2021. "Monetary policy surprises and their transmission through term premia and expected interest rates," Journal of Monetary Economics, Elsevier, vol. 124(C), pages 48-65.
    7. Michael D. Bauer & Glenn D. Rudebusch, 2020. "Interest Rates under Falling Stars," American Economic Review, American Economic Association, vol. 110(5), pages 1316-1354, May.
    8. Martin Kliem & Alexander Meyer‐Gohde, 2022. "(Un)expected monetary policy shocks and term premia," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 477-499, April.
    9. Kortela, Tomi & Nelimarkka, Jaakko, 2020. "The effects of conventional and unconventional monetary policy: Identification through the yield curve," Bank of Finland Research Discussion Papers 3/2020, Bank of Finland.
    10. Adam Goliński & Peter Spencer, 2021. "Estimating the Term Structure with Linear Regressions: Getting to the Roots of the Problem [Term Structure Persistence]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 960-984.
    11. Kortela, Tomi & Nelimarkka, Jaakko, 2020. "The effects of conventional and unconventional monetary policy : identification through the yield curve," Research Discussion Papers 3/2020, Bank of Finland.
    12. Goliński, Adam & Spencer, Peter, 2017. "The advantages of using excess returns to model the term structure," Journal of Financial Economics, Elsevier, vol. 125(1), pages 163-181.
    13. Speck, Christian, 2023. "Pricing the Bund term structure with linear regressions – without an observable short rate," Discussion Papers 08/2023, Deutsche Bundesbank.
    14. Meldrum, Andrew & Roberts-Sklar, Matt, 2015. "Long-run priors for term structure models," Bank of England working papers 575, Bank of England.
    15. Shuo Cao, 2018. "Learning about Term Structure Predictability under Uncertainty," GRU Working Paper Series GRU_2018_006, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
    16. Andras Lengyel, 2022. "Treasury Supply Shocks and the Term Structure of Interest Rates in the UK," MNB Working Papers 2022/6, Magyar Nemzeti Bank (Central Bank of Hungary).
    17. repec:zbw:bofrdp:2020_003 is not listed on IDEAS
    18. Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.
    19. Blazsek, Szabolcs & Escribano, Alvaro, 2023. "Score-driven threshold ice-age models: Benchmark models for long-run climate forecasts," Energy Economics, Elsevier, vol. 118(C).
    20. Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2014. "Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 693-714, October.
    21. Salman Huseynov, 2021. "Long and short memory in dynamic term structure models," CREATES Research Papers 2021-15, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Keywords

    factor models; risk management; term structure;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:20:y:2022:i:3:p:505-538.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.