IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v17y2022ip941-949..html
   My bibliography  Save this article

Effect of air gap depth on Trombe wall system using computational fluid dynamics
[A calibration of the solar load ratio method to determine the heat gain in PV-Trombe walls]

Author

Listed:
  • Ehsan F Abbas
  • Abdulnasser Al-abady
  • Vijayanandh Raja
  • Hussein A Z AL-bonsrulah
  • Mohammed Al-Bahrani

Abstract

The present study aimed to develop a computational model to understand the effect of air gap depth on the Trombe wall (TW) system. The simulation was performed for midday of January 17, 2017, at a Kirkuk city/Iraq; at this time, the solar intensity was at a maximum value equal to 487.1 W/m2, ambient temperature 10.1°C and wind speed 0.7 km/h. The result of the simulations is investigated with the experimental work in the literature. The various parameters such as thermal efficiency, inlet and outlet temperatures from air gap, room temperature and air mass flow rate in the air gap channel have been considered in simulation. The comparison result showed a good agreement between the predicted results and experimental work. This research work will be useful for the research community to understand the effect of air gap depth in TW system.

Suggested Citation

  • Ehsan F Abbas & Abdulnasser Al-abady & Vijayanandh Raja & Hussein A Z AL-bonsrulah & Mohammed Al-Bahrani, 2022. "Effect of air gap depth on Trombe wall system using computational fluid dynamics [A calibration of the solar load ratio method to determine the heat gain in PV-Trombe walls]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 941-949.
  • Handle: RePEc:oup:ijlctc:v:17:y:2022:i::p:941-949.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctac063
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Bin & Ji, Jie & Yi, Hua, 2008. "The influence of PV coverage ratio on thermal and electrical performance of photovoltaic-Trombe wall," Renewable Energy, Elsevier, vol. 33(11), pages 2491-2498.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hussein A Z AL-bonsrulah & Suad Hassan Danook & Mohammed J Alshukri & Ali Mahmood Ahmed & Vijayanandh Raja & Dhinakaran Veeman & Mohammed Al-Bahrani, 2023. "CFD modeling of a horizontal wind turbine by utilizing solar nozzle for power production," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 31-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Xiaojian & Shen, Chao & Liu, Dingming & Wu, Yupeng, 2023. "The performance analysis of a photo/thermal catalytic Trombe wall with energy generation," Renewable Energy, Elsevier, vol. 218(C).
    2. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    3. Zhang, Lili & Hou, Yuyao & Liu, Zu’an & Du, Junfei & Xu, Long & Zhang, Guomin & Shi, Long, 2020. "Trombe wall for a residential building in Sichuan-Tibet alpine valley – A case study," Renewable Energy, Elsevier, vol. 156(C), pages 31-46.
    4. Ji, Jie & Luo, Chenglong & Chow, Tin-Tai & Sun, Wei & He, Wei, 2011. "Thermal characteristics of a building-integrated dual-function solar collector in water heating mode with natural circulation," Energy, Elsevier, vol. 36(1), pages 566-574.
    5. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    6. Ahmad Hasan & Hamza Alnoman & Ali Hasan Shah, 2016. "Energy Efficiency Enhancement of Photovoltaics by Phase Change Materials through Thermal Energy Recovery," Energies, MDPI, vol. 9(10), pages 1-15, September.
    7. Hu, Zhongting & He, Wei & Hu, Dengyun & Lv, Song & Wang, Liping & Ji, Jie & Chen, Hongbing & Ma, Jinwei, 2017. "Design, construction and performance testing of a PV blind-integrated Trombe wall module," Applied Energy, Elsevier, vol. 203(C), pages 643-656.
    8. Islam, Nazrul & Irshad, Kashif & Zahir, Md Hasan & Islam, Saiful, 2021. "Numerical and experimental study on the performance of a Photovoltaic Trombe wall system with Venetian blinds," Energy, Elsevier, vol. 218(C).
    9. Xie, Hao & Yu, Bendong & Wang, Jun & Ji, Jie, 2021. "A novel disinfected Trombe wall for space heating and virus inactivation: Concept and performance investigation," Applied Energy, Elsevier, vol. 291(C).
    10. Liao, Wei & Xu, Shen, 2015. "Energy performance comparison among see-through amorphous-silicon PV (photovoltaic) glazings and traditional glazings under different architectural conditions in China," Energy, Elsevier, vol. 83(C), pages 267-275.
    11. Hu, Zhongting & He, Wei & Ji, Jie & Hu, Dengyun & Lv, Song & Chen, Hongbing & Shen, Zhihe, 2017. "Comparative study on the annual performance of three types of building integrated photovoltaic (BIPV) Trombe wall system," Applied Energy, Elsevier, vol. 194(C), pages 81-93.
    12. Omrany, Hossein & Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Raahemifar, Kaamran & Tookey, John, 2016. "Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1252-1269.
    13. Lin, Yuan & Ji, Jie & Lu, Xiangyou & Luo, Kun & Zhou, Fan & Ma, Yang, 2019. "Thermal and electrical behavior of built-middle photovoltaic integrated Trombe wall: Experimental and numerical study," Energy, Elsevier, vol. 189(C).
    14. Ana Briga-Sá & Anabela Paiva & João-Carlos Lanzinha & José Boaventura-Cunha & Luís Fernandes, 2021. "Influence of Air Vents Management on Trombe Wall Temperature Fluctuations: An Experimental Analysis under Real Climate Conditions," Energies, MDPI, vol. 14(16), pages 1-22, August.
    15. Yang, Tingting & Athienitis, Andreas K., 2016. "A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 886-912.
    16. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    17. Yu, Bendong & He, Wei & Li, Niansi & Wang, Liping & Cai, Jingyong & Chen, Hongbing & Ji, Jie & Xu, Gang, 2017. "Experimental and numerical performance analysis of a TC-Trombe wall," Applied Energy, Elsevier, vol. 206(C), pages 70-82.
    18. Gu, Tao & Li, Niansi & Li, Yulin & Che, Lei & Yu, Bendong & Liu, Huifang, 2023. "A novel Trombe wall with photo-thermal synergistically catalytic purification blinds: Material and experimental performance study," Energy, Elsevier, vol. 278(PB).
    19. Hu, Zhongting & He, Wei & Ji, Jie & Zhang, Shengyao, 2017. "A review on the application of Trombe wall system in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 976-987.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:17:y:2022:i::p:941-949.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.