IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5043-d616035.html
   My bibliography  Save this article

Influence of Air Vents Management on Trombe Wall Temperature Fluctuations: An Experimental Analysis under Real Climate Conditions

Author

Listed:
  • Ana Briga-Sá

    (CQ—VR and ECT—School of Science and Technology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal)

  • Anabela Paiva

    (C—MADE—Centre of Materials and Building Technologies, University of Beira Interior, 6201-001 Covilhã, Portugal)

  • João-Carlos Lanzinha

    (C—MADE—Centre of Materials and Building Technologies, University of Beira Interior, 6201-001 Covilhã, Portugal)

  • José Boaventura-Cunha

    (INESC TEC—INESC Technology and Science (Formerly INESC Porto) and ECT—School of Science and Technology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal)

  • Luís Fernandes

    (ECT—School of Science and Technology, University of Trás-os-Montes e Alto Douro UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal)

Abstract

The Trombe wall is a passive solar system that can improve buildings energy efficiency. Despite the studies already developed in this field, more research is needed to assess the possibility of its integration in buildings avoiding user intervention. In this study, the influence of air vent management and materials’ heat storage capacity upon its thermal performance, particularly in the temperature fluctuation and indoor conditions, was discussed. Comparing two days with similar solar radiation ( SR ) for non-ventilated (NVTW) and ventilated (VTW) Trombe walls, a differential of 43 °C between the external surface temperature and the one in the middle of the massive wall was verified for NVTW, while for VTW this value was 27 °C, reflecting the heat transfer by air convection, which reduced greenhouse effect, solar absorption and heat storage. A cooling capacity greater than 50% was verified for VTW compared to NVTW during night periods. An algorithm for the Trombe wall’s automation and control was proposed considering SR as variable. Air vents and external shading devices should be open when SR exceeds 100 W/m 2 and closed for 50 W/m 2 to obtain at least 20 °C inside the room. Closing for 50 W/m 2 and opening for values lower that 20 W/m 2 is suggested for summer periods.

Suggested Citation

  • Ana Briga-Sá & Anabela Paiva & João-Carlos Lanzinha & José Boaventura-Cunha & Luís Fernandes, 2021. "Influence of Air Vents Management on Trombe Wall Temperature Fluctuations: An Experimental Analysis under Real Climate Conditions," Energies, MDPI, vol. 14(16), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5043-:d:616035
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5043/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5043/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, D.T. & Chaturvedi, S.K. & Mohieldin, T.O., 1994. "An approximate method for calculating laminar natural convective motion in a trombe-wall channel," Energy, Elsevier, vol. 19(2), pages 259-268.
    2. Abed, Azhar Ahmed & Ahmed, Omer Khalil & Weis, Musa Mustafa & Hamada, Khalaf Ibrahim, 2020. "Performance augmentation of a PV/Trombe wall using Al2O3/Water nano-fluid: An experimental investigation," Renewable Energy, Elsevier, vol. 157(C), pages 515-529.
    3. Jiang, Bin & Ji, Jie & Yi, Hua, 2008. "The influence of PV coverage ratio on thermal and electrical performance of photovoltaic-Trombe wall," Renewable Energy, Elsevier, vol. 33(11), pages 2491-2498.
    4. Sun, Wei & Ji, Jie & Luo, Chenglong & He, Wei, 2011. "Performance of PV-Trombe wall in winter correlated with south façade design," Applied Energy, Elsevier, vol. 88(1), pages 224-231, January.
    5. Chen, B. & Chen, X. & Ding, Y.H. & Jia, X., 2006. "Shading effects on the winter thermal performance of the Trombe wall air gap: An experimental study in Dalian," Renewable Energy, Elsevier, vol. 31(12), pages 1961-1971.
    6. Ahmed, Omer K. & Hamada, Khalaf I. & Salih, Abdulrazzaq M., 2019. "Enhancement of the performance of Photovoltaic/Trombe wall system using the porous medium: Experimental and theoretical study," Energy, Elsevier, vol. 171(C), pages 14-26.
    7. Xu, Lijie & Ji, Jie & Cai, Jingyong & Ke, Wei & Tian, Xinyi & Yu, Bendong & Wang, Jun, 2021. "A hybrid PV thermal (water or air) wall system integrated with double air channel and phase change material: A continuous full-day seasonal experimental research," Renewable Energy, Elsevier, vol. 173(C), pages 596-613.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuewei Zhu & Tao Zhang & Qingsong Ma & Hiroatsu Fukuda, 2022. "Thermal Performance and Optimizing of Composite Trombe Wall with Temperature-Controlled DC Fan in Winter," Sustainability, MDPI, vol. 14(5), pages 1-15, March.
    2. Aleksejs Prozuments & Anatolijs Borodinecs & Guna Bebre & Diana Bajare, 2023. "A Review on Trombe Wall Technology Feasibility and Applications," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    3. Jerzy Szyszka, 2022. "From Direct Solar Gain to Trombe Wall: An Overview on Past, Present and Future Developments," Energies, MDPI, vol. 15(23), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    2. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    3. Zhang, Lili & Hou, Yuyao & Liu, Zu’an & Du, Junfei & Xu, Long & Zhang, Guomin & Shi, Long, 2020. "Trombe wall for a residential building in Sichuan-Tibet alpine valley – A case study," Renewable Energy, Elsevier, vol. 156(C), pages 31-46.
    4. Ke, Wei & Ji, Jie & Zhang, Chengyan & Xie, Hao & Tang, Yayun & Wang, Chuyao, 2023. "Effects of the PCM layer position on the comprehensive performance of a built-middle PV-Trombe wall system for building application in the heating season," Energy, Elsevier, vol. 267(C).
    5. Islam, Nazrul & Irshad, Kashif & Zahir, Md Hasan & Islam, Saiful, 2021. "Numerical and experimental study on the performance of a Photovoltaic Trombe wall system with Venetian blinds," Energy, Elsevier, vol. 218(C).
    6. Wang, Chuyao & Ji, Jie, 2023. "Comprehensive performance analysis of a rural building integrated PV/T wall in hot summer and cold winter region," Energy, Elsevier, vol. 282(C).
    7. Lin, Yuan & Ji, Jie & Lu, Xiangyou & Luo, Kun & Zhou, Fan & Ma, Yang, 2019. "Thermal and electrical behavior of built-middle photovoltaic integrated Trombe wall: Experimental and numerical study," Energy, Elsevier, vol. 189(C).
    8. Hu, Zhongting & He, Wei & Ji, Jie & Zhang, Shengyao, 2017. "A review on the application of Trombe wall system in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 976-987.
    9. Duan, Xiaojian & Shen, Chao & Liu, Dingming & Wu, Yupeng, 2023. "The performance analysis of a photo/thermal catalytic Trombe wall with energy generation," Renewable Energy, Elsevier, vol. 218(C).
    10. Yu, Bendong & Fan, Miaomiao & Gu, Tao & Xia, Xiaokang & Li, Niansi, 2022. "The performance analysis of the photo-thermal driven synergetic catalytic PV-Trombe wall," Renewable Energy, Elsevier, vol. 192(C), pages 264-278.
    11. Ji, Jie & Luo, Chenglong & Chow, Tin-Tai & Sun, Wei & He, Wei, 2011. "Thermal characteristics of a building-integrated dual-function solar collector in water heating mode with natural circulation," Energy, Elsevier, vol. 36(1), pages 566-574.
    12. Hu, Zhongting & He, Wei & Hu, Dengyun & Lv, Song & Wang, Liping & Ji, Jie & Chen, Hongbing & Ma, Jinwei, 2017. "Design, construction and performance testing of a PV blind-integrated Trombe wall module," Applied Energy, Elsevier, vol. 203(C), pages 643-656.
    13. Yu, Bendong & Li, Niansi & Yan, Chengchu & Liu, Xiaoyong & Liu, Huifang & Ji, Jie & Xu, Xiaoping, 2022. "The comprehensive performance analysis on a novel high-performance air-purification-sterilization type PV-Trombe wall," Renewable Energy, Elsevier, vol. 182(C), pages 1201-1218.
    14. Yiqing Dai & Yu Bai, 2020. "Performance Improvement for Building Integrated Photovoltaics in Practice: A Review," Energies, MDPI, vol. 14(1), pages 1-22, December.
    15. Xie, Hao & Yu, Bendong & Wang, Jun & Ji, Jie, 2021. "A novel disinfected Trombe wall for space heating and virus inactivation: Concept and performance investigation," Applied Energy, Elsevier, vol. 291(C).
    16. Hu, Zhongting & He, Wei & Ji, Jie & Hu, Dengyun & Lv, Song & Chen, Hongbing & Shen, Zhihe, 2017. "Comparative study on the annual performance of three types of building integrated photovoltaic (BIPV) Trombe wall system," Applied Energy, Elsevier, vol. 194(C), pages 81-93.
    17. Yang, Tingting & Athienitis, Andreas K., 2016. "A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 886-912.
    18. Yu, Bendong & He, Wei & Li, Niansi & Wang, Liping & Cai, Jingyong & Chen, Hongbing & Ji, Jie & Xu, Gang, 2017. "Experimental and numerical performance analysis of a TC-Trombe wall," Applied Energy, Elsevier, vol. 206(C), pages 70-82.
    19. Gu, Tao & Li, Niansi & Li, Yulin & Che, Lei & Yu, Bendong & Liu, Huifang, 2023. "A novel Trombe wall with photo-thermal synergistically catalytic purification blinds: Material and experimental performance study," Energy, Elsevier, vol. 278(PB).
    20. Zhang, Chenyu & Wang, Ning & Xu, Hongtao & Fang, Yuan & Yang, Qiguo & Talkhoncheh, Fariborz Karimi, 2023. "Thermal management optimization of the photovoltaic cell by the phase change material combined with metal fins," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5043-:d:616035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.