IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v17y2022ip571-580..html
   My bibliography  Save this article

Comparative analysis between constant and variable solar radiation reflectivity for exterior walls in the hot-summer and cold-winter zone
[Influence of the copper foam fin (CFF) shapes on thermal performance of phase-change material (PCM) in an enclosed cavity]

Author

Listed:
  • Xi Meng
  • Jiahui Wang
  • Shuhan Liu

Abstract

The thermal and optical performance in coating material of exterior walls affected the thermal action from the outdoor thermal environment indirectly, but there was the contrary thermal requirement in winter and summer, which could not be met by the constant-reflectivity coating. To overcome this drawback, the variable-reflectivity coating was analyzed and evaluated by taking three constant-reflectivity coatings as the references. The thermal transfer model with dynamic radiation reflectivity was built to simulate the thermal process of exterior walls in the whole year. Numerical results showed that the constant-reflectivity coating had poor seasonal adaptability with the best performance in some certain months and the poorest behavior in other months, while the variable-reflectivity coating had the better seasonal adaptability to dampen the heat gain in summer and promote the heat gain in winter. Although the variable-reflectivity coating could not show the optimal in all months, its overall performance played the best in the whole year. And compared with constant-reflectivity coating with radiation reflectivity of 90%, 50% and 10%, the variable-reflectivity coating could reduce the annual heating and cooling loads by 2.45%, 16.67% and 46.46%, respectively, in the studied Nanjing City of China.

Suggested Citation

  • Xi Meng & Jiahui Wang & Shuhan Liu, 2022. "Comparative analysis between constant and variable solar radiation reflectivity for exterior walls in the hot-summer and cold-winter zone [Influence of the copper foam fin (CFF) shapes on thermal p," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 571-580.
  • Handle: RePEc:oup:ijlctc:v:17:y:2022:i::p:571-580.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctac028
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabiani, C. & Pisello, A.L. & Bou-Zeid, E. & Yang, J. & Cotana, F., 2019. "Adaptive measures for mitigating urban heat islands: The potential of thermochromic materials to control roofing energy balance," Applied Energy, Elsevier, vol. 247(C), pages 155-170.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan Ting Katty Huang & Pierre Masselot & Elie Bou-Zeid & Simone Fatichi & Athanasios Paschalis & Ting Sun & Antonio Gasparrini & Gabriele Manoli, 2023. "Economic valuation of temperature-related mortality attributed to urban heat islands in European cities," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Fabiani, C. & Castaldo, V.L. & Pisello, A.L., 2020. "Thermochromic materials for indoor thermal comfort improvement: Finite difference modeling and validation in a real case-study building," Applied Energy, Elsevier, vol. 262(C).
    3. Pigliautile, I. & Pisello, A.L. & Bou-Zeid, E., 2020. "Humans in the city: Representing outdoor thermal comfort in urban canopy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Zhang, Ya & Liu, Huan & Niu, Jinfei & Wang, Xiaodong & Wu, Dezhen, 2020. "Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management," Applied Energy, Elsevier, vol. 264(C).
    5. Xi Meng & Li Meng & Jiahui Wang, 2022. "Energy-saving contribution of the thermochromic coating in exterior walls in hot-summer and cold-winter zone [Demand response scheduling algorithm of the economic energy consumption in buildings fo," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 710-719.
    6. Fabiani, Claudia & Chiatti, Chiara & Pisello, Anna Laura, 2021. "Development of photoluminescent composites for energy efficiency in smart outdoor lighting applications: An experimental and numerical investigation," Renewable Energy, Elsevier, vol. 172(C), pages 1-15.
    7. Butt, Afaq A. & de Vries, Samuel B. & Loonen, Roel C.G.M. & Hensen, Jan L.M. & Stuiver, Anthonie & van den Ham, Jonathan E.J. & Erich, Bart S.J.F., 2021. "Investigating the energy saving potential of thermochromic coatings on building envelopes," Applied Energy, Elsevier, vol. 291(C).
    8. Chiatti, Chiara & Fabiani, Claudia & Cotana, Franco & Pisello, Anna Laura, 2021. "Exploring the potential of photoluminescence for urban passive cooling and lighting applications: A new approach towards materials’ optimization," Energy, Elsevier, vol. 231(C).
    9. Angeliki Kitsopoulou & Evangelos Bellos & Christos Tzivanidis, 2024. "An Up-to-Date Review of Passive Building Envelope Technologies for Sustainable Design," Energies, MDPI, vol. 17(16), pages 1-55, August.
    10. Gabriele Battista & Luca Evangelisti & Claudia Guattari & Emanuele De Lieto Vollaro & Roberto De Lieto Vollaro & Francesco Asdrubali, 2020. "Urban Heat Island Mitigation Strategies: Experimental and Numerical Analysis of a University Campus in Rome (Italy)," Sustainability, MDPI, vol. 12(19), pages 1-18, September.
    11. Cavadini, Giovan Battista & Cook, Lauren M., 2021. "Green and cool roof choices integrated into rooftop solar energy modelling," Applied Energy, Elsevier, vol. 296(C).
    12. Fabiani, Claudia & Gambucci, Marta & Chiatti, Chiara & Zampini, Giulia & Latterini, Loredana & Pisello, Anna Laura, 2022. "Towards field implementation of photoluminescence in the built environment for passive cooling and lighting energy efficiency," Applied Energy, Elsevier, vol. 324(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:17:y:2022:i::p:571-580.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.