IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v17y2022ip342-355..html
   My bibliography  Save this article

Application evaluation of passive energy-saving strategies in exterior envelopes for rural traditional dwellings in northeast of Sichuan hills, China
[A review on research and development of passive building in China]

Author

Listed:
  • Jiawen Hou
  • Tao Zhang
  • Zu’an Liu
  • Lili Zhang
  • Hiroatsu Fukuda

Abstract

With the increase of residents’ requirements for the living environment, the current indoor thermal environment cannot meet the needs of modern rural residents who live in the northeast of Sichuan, China. Passive energy-saving strategies can not only improve the thermal performance of envelopes but also create high economic benefits. Evaluating the application effect of passive energy-saving strategies for traditional dwellings can provide a guide for local residents and policy makers to select rational passive strategies. Seven energy-saving strategies are proposed based on the current local building construction and heat transfer model, and then their energy-saving potential is evaluated by using EnergyPlus and the dynamic investment payback period method. Results show that adding exterior envelope insulation and setting on-top sunspaces on the roof simultaneously can save 83.9% of building energy consumption. However, the most economic energy-saving strategy is only employing exterior envelope insulation for local traditional dwellings when considering the economy. It can save 842 CNY/m2 during 100 years and its dynamic investment payback period is 14.1 years. In addition, building orientation also affects the energy-saving effects and the energy-saving rate can be increased by 8.4% under the optimal orientation (facing south) compared with the worst orientation (facing west).

Suggested Citation

  • Jiawen Hou & Tao Zhang & Zu’an Liu & Lili Zhang & Hiroatsu Fukuda, 2022. "Application evaluation of passive energy-saving strategies in exterior envelopes for rural traditional dwellings in northeast of Sichuan hills, China [A review on research and development of passiv," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 342-355.
  • Handle: RePEc:oup:ijlctc:v:17:y:2022:i::p:342-355.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctac007
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bevilacqua, Piero & Benevento, Federica & Bruno, Roberto & Arcuri, Natale, 2019. "Are Trombe walls suitable passive systems for the reduction of the yearly building energy requirements?," Energy, Elsevier, vol. 185(C), pages 554-566.
    2. Zhang, Lili & Hou, Yuyao & Liu, Zu’an & Du, Junfei & Xu, Long & Zhang, Guomin & Shi, Long, 2020. "Trombe wall for a residential building in Sichuan-Tibet alpine valley – A case study," Renewable Energy, Elsevier, vol. 156(C), pages 31-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yurou Tong & Hui Yang & Li Bao & Baoxia Guo & Yanzhuo Shi & Congcong Wang, 2022. "Analysis of Thermal Insulation Thickness for a Container House in the Yanqing Zone of the Beijing 2022 Olympic and Paralympic Winter Games," IJERPH, MDPI, vol. 19(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhigang & Liu, Qiaoli & Yao, Wanxiang & Zhang, Wei & Cao, Jingfu & He, Haiyan, 2022. "Research on temperature distribution characteristics and energy saving potential of wall implanted with heat pipes in heating season," Renewable Energy, Elsevier, vol. 195(C), pages 1037-1049.
    2. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Roberto Bruno & Francesco Nicoletti & Giorgio Cuconati & Stefania Perrella & Daniela Cirone, 2020. "Performance Indexes of an Air-Water Heat Pump Versus the Capacity Ratio: Analysis by Means of Experimental Data," Energies, MDPI, vol. 13(13), pages 1-19, July.
    4. Anna Magrini & Giorgia Lentini, 2020. "NZEB Analyses by Means of Dynamic Simulation and Experimental Monitoring in Mediterranean Climate," Energies, MDPI, vol. 13(18), pages 1-25, September.
    5. Pau Chung Leng & Gabriel Hoh Teck Ling & Mohd Hamdan Ahmad & Dilshan Remaz Ossen & Eeydzah Aminudin & Weng Howe Chan & Dg Normaswanna Tawasil, 2020. "Thermal Performance of Single-Story Air-Welled Terraced House in Malaysia: A Field Measurement Approach," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    6. Jerzy Szyszka & Piero Bevilacqua & Roberto Bruno, 2020. "An Innovative Trombe Wall for Winter Use: The Thermo-Diode Trombe Wall," Energies, MDPI, vol. 13(9), pages 1-15, May.
    7. Evola, Gianpiero & Costanzo, Vincenzo & Infantone, Marco & Marletta, Luigi, 2021. "Typical-year and multi-year building energy simulation approaches: A critical comparison," Energy, Elsevier, vol. 219(C).
    8. Askari, Minoo & Jahangir, Mohammad Hossein, 2023. "Evaluation of thermal performance and energy efficiency of a Trombe wall improved with dual phase change materials," Energy, Elsevier, vol. 284(C).
    9. Wang, Lin & Zhou, Jinzhi & Bisengimana, Emmanuel & Ji, Yasheng & Zhong, Wei & Yuan, Yanping & Lu, Lin, 2023. "Numerical study on the thermal and electrical performance of a novel MCHP PV-Trombe wall system," Energy, Elsevier, vol. 269(C).
    10. Duan, Shuangping & Wang, Lin & Zhao, Zhiqiang & Zhang, Chengwang, 2021. "Experimental study on thermal performance of an integrated PCM Trombe wall," Renewable Energy, Elsevier, vol. 163(C), pages 1932-1941.
    11. Jerzy Szyszka, 2022. "From Direct Solar Gain to Trombe Wall: An Overview on Past, Present and Future Developments," Energies, MDPI, vol. 15(23), pages 1-25, November.
    12. Uthpala Rathnayake & Denvid Lau & Cheuk Lun Chow, 2020. "Review on Energy and Fire Performance of Water Wall Systems as a Green Building Façade," Sustainability, MDPI, vol. 12(20), pages 1-27, October.
    13. Lili Zhang & Lei Tian & Qiong Shen & Fei Liu & Haolin Li & Zhuojun Dong & Jingyue Cheng & Haoru Liu & Jiangjun Wan, 2021. "Study on the Influence and Optimization of the Venturi Effect on the Natural Ventilation of Buildings in the Xichang Area," Energies, MDPI, vol. 14(16), pages 1-17, August.
    14. Bevilacqua, Piero & Bruno, Roberto & Szyszka, Jerzy & Cirone, Daniela & Rollo, Antonino, 2022. "Summer and winter performance of an innovative concept of Trombe wall for residential buildings," Energy, Elsevier, vol. 258(C).
    15. Jerzy Szyszka, 2020. "Experimental Evaluation of the Heat Balance of an Interactive Glass Wall in A Heating Season," Energies, MDPI, vol. 13(3), pages 1-16, February.
    16. Roberto Bruno & Antonio Cristaudo, 2024. "Theoretical Analysis of a Novel Rock Wall to Limit Heating Demands in Historical Buildings," Energies, MDPI, vol. 17(21), pages 1-20, October.
    17. Tao, Yao & Zhang, Haihua & Huang, Dongmei & Fan, Chuangang & Tu, Jiyuan & Shi, Long, 2021. "Ventilation performance of a naturally ventilated double skin façade with low-e glazing," Energy, Elsevier, vol. 229(C).
    18. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    19. Mehrdad Ghamari & Senthilarasu Sundaram, 2024. "Solar Wall Technology and Its Impact on Building Performance," Energies, MDPI, vol. 17(5), pages 1-36, February.
    20. Francesco Nocera & Rosa Caponetto & Giada Giuffrida & Maurizio Detommaso, 2020. "Energetic Retrofit Strategies for Traditional Sicilian Wine Cellars: A Case Study," Energies, MDPI, vol. 13(12), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:17:y:2022:i::p:342-355.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.