IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v16y2021i4p1135-1149..html
   My bibliography  Save this article

Performance characteristics and working fluid selection for high-temperature organic Rankine cycle driven by solar parabolic trough collector
[Categorization and analysis of heat sources for organic Rankine cycle systems]

Author

Listed:
  • Wei Zhao
  • Ning Xie
  • Wei Zhang
  • Jingpeng Yue
  • Lingbao Wang
  • Xianbiao Bu
  • Huashan Li

Abstract

In present paper, thermodynamic analysis and techno-economic assessment of an organic Rankine cycle (ORC) coupled with solar parabolic trough collector (PTC) are investigated. The thermodynamic and economic models, based on the principles of thermodynamics and heat transfer, as well as dynamic economic analysis, are developed for the components of the combined system. By performing a parametric study, the effects of outlet temperature (TPTC,out) and temperature difference between inlet and outlet of PTC (ΔT) and pinch point temperature difference of heat exchangers on the thermo-economic performance are evaluated. Moreover, under reasonable thermodynamic boundary conditions, the optimal operational parameters are obtained via a Pareto frontier solution. It is indicated that the improving TPTC,out is beneficial to the thermo-economic performance. Among the fluid candidates, toluene yields the best energy, exergetic and economic performance. There exists an optimal ΔT at which the thermal and exergy efficiency achieve the maximum. The optimal ΔT is 19–26°C for the screened working fluids. The pinch point temperature difference of evaporator has different impact on the system performance compared with that of condenser. The evaporator pinch point temperature difference has slight influence on the economic performance when it is larger than 10°C. While there is optimized condenser pinch point temperature difference (7–8°C), the economic performance is the optimal. The PTC and heat exchanger are the main source of total investment cost, account for more than 75%. The Pareto frontier solutions can provide a design guide for the decision maker.

Suggested Citation

  • Wei Zhao & Ning Xie & Wei Zhang & Jingpeng Yue & Lingbao Wang & Xianbiao Bu & Huashan Li, 2021. "Performance characteristics and working fluid selection for high-temperature organic Rankine cycle driven by solar parabolic trough collector [Categorization and analysis of heat sources for organi," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(4), pages 1135-1149.
  • Handle: RePEc:oup:ijlctc:v:16:y:2021:i:4:p:1135-1149.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctab036
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rayegan, R. & Tao, Y.X., 2011. "A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs)," Renewable Energy, Elsevier, vol. 36(2), pages 659-670.
    2. Desai, Nishith B. & Bandyopadhyay, Santanu, 2009. "Process integration of organic Rankine cycle," Energy, Elsevier, vol. 34(10), pages 1674-1686.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Enhua & Mao, Jingwen & Zhang, Bo & Wang, Yongzhen, 2023. "On the CAMD method based on PC-SAFT for working fluid design of a high-temperature organic Rankine cycle," Energy, Elsevier, vol. 263(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Haoshui & Gundersen, Truls & Feng, Xiao, 2018. "Process integration of organic Rankine cycle (ORC) and heat pump for low temperature waste heat recovery," Energy, Elsevier, vol. 160(C), pages 330-340.
    2. Yu, Haoshui & Feng, Xiao & Wang, Yufei & Biegler, Lorenz T. & Eason, John, 2016. "A systematic method to customize an efficient organic Rankine cycle (ORC) to recover waste heat in refineries," Applied Energy, Elsevier, vol. 179(C), pages 302-315.
    3. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    4. Guillermo Valencia & Armando Fontalvo & Yulineth Cárdenas & Jorge Duarte & Cesar Isaza, 2019. "Energy and Exergy Analysis of Different Exhaust Waste Heat Recovery Systems for Natural Gas Engine Based on ORC," Energies, MDPI, vol. 12(12), pages 1-22, June.
    5. Yu, Haoshui & Feng, Xiao & Wang, Yufei, 2015. "A new pinch based method for simultaneous selection of working fluid and operating conditions in an ORC (Organic Rankine Cycle) recovering waste heat," Energy, Elsevier, vol. 90(P1), pages 36-46.
    6. Khatita, Mohammed A. & Ahmed, Tamer S. & Ashour, Fatma. H. & Ismail, Ibrahim M., 2014. "Power generation using waste heat recovery by organic Rankine cycle in oil and gas sector in Egypt: A case study," Energy, Elsevier, vol. 64(C), pages 462-472.
    7. Lee, Ung & Jeon, Jeongwoo & Han, Chonghun & Lim, Youngsub, 2017. "Superstructure based techno-economic optimization of the organic rankine cycle using LNG cryogenic energy," Energy, Elsevier, vol. 137(C), pages 83-94.
    8. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    9. Liu, Bo & Rivière, Philippe & Coquelet, Christophe & Gicquel, Renaud & David, Franck, 2012. "Investigation of a two stage Rankine cycle for electric power plants," Applied Energy, Elsevier, vol. 100(C), pages 285-294.
    10. Dong, Xuan & Hong, Xiaodong & Liao, Zuwei & Sun, Jingyuan & Huang, Zhengliang & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2024. "Optimizing waste heat recovery with organic Rankine cycles: A novel graphical approach based on Exergy-Enthalpy diagrams," Energy, Elsevier, vol. 311(C).
    11. Hajabdollahi, Zahra & Hajabdollahi, Farzaneh & Tehrani, Mahdi & Hajabdollahi, Hassan, 2013. "Thermo-economic environmental optimization of Organic Rankine Cycle for diesel waste heat recovery," Energy, Elsevier, vol. 63(C), pages 142-151.
    12. Xu, Changzhe & Xu, Yanyan & Zhou, Mingxi & Ye, Shuang & Huang, Weiguang, 2024. "General integration method for system configuration of organic Rankine cycle based on stage-wise concept," Energy, Elsevier, vol. 310(C).
    13. Kermani, Maziar & Wallerand, Anna S. & Kantor, Ivan D. & Maréchal, François, 2018. "Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes," Applied Energy, Elsevier, vol. 212(C), pages 1203-1225.
    14. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    15. Lai, Ngoc Anh & Wendland, Martin & Fischer, Johann, 2011. "Working fluids for high-temperature organic Rankine cycles," Energy, Elsevier, vol. 36(1), pages 199-211.
    16. Stijepovic, Mirko Z. & Papadopoulos, Athanasios I. & Linke, Patrick & Grujic, Aleksandar S. & Seferlis, Panos, 2014. "An exergy composite curves approach for the design of optimum multi-pressure organic Rankine cycle processes," Energy, Elsevier, vol. 69(C), pages 285-298.
    17. Wang, Jingyi & Wang, Zhe & Zhou, Ding & Sun, Kaiyu, 2019. "Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems," Energy, Elsevier, vol. 188(C).
    18. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    19. Satanphol, K. & Pridasawas, W. & Suphanit, B., 2017. "A study on optimal composition of zeotropic working fluid in an Organic Rankine Cycle (ORC) for low grade heat recovery," Energy, Elsevier, vol. 123(C), pages 326-339.
    20. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:16:y:2021:i:4:p:1135-1149.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.