Overview of working fluids and sustainable heating, cooling and power generation technologies
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Levihn, Fabian, 2017. "CHP and heat pumps to balance renewable power production: Lessons from the district heating network in Stockholm," Energy, Elsevier, vol. 137(C), pages 670-678.
- Aydin, Devrim & Casey, Sean P. & Riffat, Saffa, 2015. "The latest advancements on thermochemical heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 356-367.
- Anisimov, Sergey & Pandelidis, Demis & Jedlikowski, Andrzej & Polushkin, Vitaliy, 2014. "Performance investigation of a M (Maisotsenko)-cycle cross-flow heat exchanger used for indirect evaporative cooling," Energy, Elsevier, vol. 76(C), pages 593-606.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Adriano da S. Marques & Monica Carvalho & Álvaro A. V. Ochoa & Ronelly J. Souza & Carlos A. C. dos Santos, 2020. "Exergoeconomic Assessment of a Compact Electricity-Cooling Cogeneration Unit," Energies, MDPI, vol. 13(20), pages 1-18, October.
- Catapano, F. & Frazzica, A. & Freni, A. & Manzan, M. & Micheli, D. & Palomba, V. & Sementa, P. & Vaglieco, B.M., 2022. "Development and experimental testing of an integrated prototype based on Stirling, ORC and a latent thermal energy storage system for waste heat recovery in naval application," Applied Energy, Elsevier, vol. 311(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Helistö, Niina & Kiviluoma, Juha & Morales-España, Germán & O’Dwyer, Ciara, 2021. "Impact of operational details and temporal representations on investment planning in energy systems dominated by wind and solar," Applied Energy, Elsevier, vol. 290(C).
- Courbon, Emilie & D'Ans, Pierre & Permyakova, Anastasia & Skrylnyk, Oleksandr & Steunou, Nathalie & Degrez, Marc & Frère, Marc, 2017. "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability," Applied Energy, Elsevier, vol. 190(C), pages 1184-1194.
- Rämä, Miika & Wahlroos, Mikko, 2018. "Introduction of new decentralised renewable heat supply in an existing district heating system," Energy, Elsevier, vol. 154(C), pages 68-79.
- Milana Treshcheva & Irina Anikina & Vitaly Sergeev & Sergey Skulkin & Dmitry Treshchev, 2021. "Selection of Heat Pump Capacity Used at Thermal Power Plants under Electricity Market Operating Conditions," Energies, MDPI, vol. 14(1), pages 1-25, January.
- Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.
- Ham, Sang-Woo & Jeong, Jae-Weon, 2016. "DPHX (dew point evaporative heat exchanger): System design and performance analysis," Energy, Elsevier, vol. 101(C), pages 132-145.
- Clark, Ruby-Jean & Farid, Mohammed, 2022. "Experimental investigation into cascade thermochemical energy storage system using SrCl2-cement and zeolite-13X materials," Applied Energy, Elsevier, vol. 316(C).
- Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
- Lehmann, Christoph & Beckert, Steffen & Gläser, Roger & Kolditz, Olaf & Nagel, Thomas, 2017. "Assessment of adsorbate density models for numerical simulations of zeolite-based heat storage applications," Applied Energy, Elsevier, vol. 185(P2), pages 1965-1970.
- Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
- Lai, Chun Sing & Locatelli, Giorgio, 2021. "Economic and financial appraisal of novel large-scale energy storage technologies," Energy, Elsevier, vol. 214(C).
- Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
- Liu, Jiatao & Lu, Shilei, 2024. "Thermal performance of packed-bed latent heat storage tank integrated with flat-plate collectors under intermittent loads of building heating," Energy, Elsevier, vol. 299(C).
- Boldrini, A. & Jiménez Navarro, J.P. & Crijns-Graus, W.H.J. & van den Broek, M.A., 2022. "The role of district heating systems to provide balancing services in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Daraei, Mahsa & Campana, Pietro Elia & Thorin, Eva, 2020. "Power-to-hydrogen storage integrated with rooftop photovoltaic systems and combined heat and power plants," Applied Energy, Elsevier, vol. 276(C).
- Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2016. "Modeling and parametric analysis of an adsorber unit for thermal energy storage," Energy, Elsevier, vol. 102(C), pages 83-94.
- Xu, Y.X. & Yan, J. & Zhao, C.Y., 2022. "Investigation on application temperature zone and exergy loss regulation based on MgCO3/MgO thermochemical heat storage and release process," Energy, Elsevier, vol. 239(PC).
- Zhang, Shaoliang & Liu, Shuli & Xu, Zhiqi & Chen, Hongkuan & Wang, Jihong & Li, Yongliang & Yar Khan, Sheher & Kumar, Mahesh, 2024. "Effect of the irradiation intensity on the photo-thermal conversion performance of composite phase change materials: An experimental approach," Renewable Energy, Elsevier, vol. 225(C).
- Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
- Dorotić, Hrvoje & Ban, Marko & Pukšec, Tomislav & Duić, Neven, 2020. "Impact of wind penetration in electricity markets on optimal power-to-heat capacities in a local district heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
More about this item
Keywords
long-term sustainable fluids; sustainability; air conditioning; refrigeration; power generation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:12:y:2017:i:4:p:369-382.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.