Investigation of the effect of design parameters on power output and thermal efficiency of a Stirling engine by thermodynamic analysis
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kongtragool, Bancha & Wongwises, Somchai, 2003. "A review of solar-powered Stirling engines and low temperature differential Stirling engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(2), pages 131-154, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xu, Haoran & Chen, Lingen & Ge, Yanlin & Feng, Huijun, 2022. "Multi-objective optimization of Stirling heat engine with various heat and mechanical losses," Energy, Elsevier, vol. 256(C).
- Li, Mingqiang & Ngwaka, Ugochukwu & Moeini Korbekandi, Ramin & Baker, Nick & Wu, Dawei & Tsolakis, Athanasios, 2023. "A closed-loop linear engine generator using inert gases: A performance and exergy study," Energy, Elsevier, vol. 281(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Karabulut, Halit & Yücesu, Hüseyin Serdar & ÇInar, Can & Aksoy, Fatih, 2009. "An experimental study on the development of a [beta]-type Stirling engine for low and moderate temperature heat sources," Applied Energy, Elsevier, vol. 86(1), pages 68-73, January.
- Hadžiselimović, Miralem & Srpčič, Gregor & Brinovar, Iztok & Praunseis, Zdravko & Seme, Sebastijan & Štumberger, Bojan, 2019. "A novel concept of linear oscillatory synchronous generator designed for a stirling engine," Energy, Elsevier, vol. 180(C), pages 19-27.
- Cheng, Chin-Hsiang & Yu, Ying-Ju, 2012. "Combining dynamic and thermodynamic models for dynamic simulation of a beta-type Stirling engine with rhombic-drive mechanism," Renewable Energy, Elsevier, vol. 37(1), pages 161-173.
- Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
- Karabulut, H. & Çınar, C. & Oztürk, E. & Yücesu, H.S., 2010. "Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism," Renewable Energy, Elsevier, vol. 35(1), pages 138-143.
- Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2013. "The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 442-459.
- Leena Grandell & Mikael Höök, 2015. "Assessing Rare Metal Availability Challenges for Solar Energy Technologies," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
- Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
- Kato, Yoshitaka, 2016. "Indicated diagrams of a low temperature differential Stirling engine using flat plates as heat exchangers," Renewable Energy, Elsevier, vol. 85(C), pages 973-980.
- Masoumi, A.P. & Tavakolpour-Saleh, A.R. & Rahideh, A., 2020. "Applying a genetic-fuzzy control scheme to an active free piston Stirling engine: Design and experiment," Applied Energy, Elsevier, vol. 268(C).
- Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
- Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
- Cheng, Chin-Hsiang & Yu, Ying-Ju, 2011. "Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models," Renewable Energy, Elsevier, vol. 36(2), pages 714-725.
- Chin-Hsiang Cheng & Yu-Ting Lin, 2020. "Optimization of a Stirling Engine by Variable-Step Simplified Conjugate-Gradient Method and Neural Network Training Algorithm," Energies, MDPI, vol. 13(19), pages 1-18, October.
- Marcin Wołowicz & Piotr Kolasiński & Krzysztof Badyda, 2021. "Modern Small and Microcogeneration Systems—A Review," Energies, MDPI, vol. 14(3), pages 1-47, February.
- Thombare, D.G. & Verma, S.K., 2008. "Technological development in the Stirling cycle engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 1-38, January.
- Peng, Wanli & Li, Wangyang & Chen, Xiaohang & Su, Guozhen & Chen, Jincan, 2019. "Optimum operation states and parametric selection criteria of an updated solar-driven AMTEC," Renewable Energy, Elsevier, vol. 141(C), pages 209-216.
- Ferreira, Ana Cristina & Silva, João & Teixeira, Senhorinha & Teixeira, José Carlos & Nebra, Silvia Azucena, 2020. "Assessment of the Stirling engine performance comparing two renewable energy sources: Solar energy and biomass," Renewable Energy, Elsevier, vol. 154(C), pages 581-597.
- Buliński, Zbigniew & Szczygieł, Ireneusz & Krysiński, Tomasz & Stanek, Wojciech & Czarnowska, Lucyna & Gładysz, Paweł & Kabaj, Adam, 2017. "Finite time thermodynamic analysis of small alpha-type Stirling engine in non-ideal polytropic conditions for recovery of LNG cryogenic exergy," Energy, Elsevier, vol. 141(C), pages 2559-2571.
- Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Performance analysis of a solar-powered solid state heat engine for electricity generation," Energy, Elsevier, vol. 93(P1), pages 165-172.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:11:y:2016:i:2:p:141-156.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.